{"title":"硼硅酸盐冠玻璃光学元件的大气等离子体喷射加工","authors":"H. Müller, G. Böhm, T. Arnold","doi":"10.1117/12.2593591","DOIUrl":null,"url":null,"abstract":"Atmospheric Plasma Jet Machining is performed on Borosilicate Crown Glass. A fluorine containing plasma jet is suitable for the etching of the material. A substrate surface temperature of about 325°C during processing is necessary for a controlled removal. The figure error can be corrected by a dwell time based deterministic process. The resulting surface roughness depends on the surface temperature of the processed sample.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atmospheric plasma jet machining of an optical element made from borosilicate crown glass\",\"authors\":\"H. Müller, G. Böhm, T. Arnold\",\"doi\":\"10.1117/12.2593591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric Plasma Jet Machining is performed on Borosilicate Crown Glass. A fluorine containing plasma jet is suitable for the etching of the material. A substrate surface temperature of about 325°C during processing is necessary for a controlled removal. The figure error can be corrected by a dwell time based deterministic process. The resulting surface roughness depends on the surface temperature of the processed sample.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2593591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atmospheric plasma jet machining of an optical element made from borosilicate crown glass
Atmospheric Plasma Jet Machining is performed on Borosilicate Crown Glass. A fluorine containing plasma jet is suitable for the etching of the material. A substrate surface temperature of about 325°C during processing is necessary for a controlled removal. The figure error can be corrected by a dwell time based deterministic process. The resulting surface roughness depends on the surface temperature of the processed sample.