用于连续过程中数据记录传感器故障检测和分类的矢量支持机

Carlos I. Sanseverinatti, Mariano M. Perdomo, Luis A. Clementi, J. R. Vega
{"title":"用于连续过程中数据记录传感器故障检测和分类的矢量支持机","authors":"Carlos I. Sanseverinatti, Mariano M. Perdomo, Luis A. Clementi, J. R. Vega","doi":"10.1109/ARGENCON55245.2022.9940020","DOIUrl":null,"url":null,"abstract":"En el presente trabajo se implementó un módulo para la detección de fallas en sensores de registro de variables en procesos continuos, el cual se desarrolló sobre la base de una máquina de soporte vectorial. Con el fin de obtener una arquitectura adecuada de la máquina, se estudió el desempeño del módulo para diversas implementaciones obtenidas a partir de diferentes técnicas de codificación múltiple y maquinas Kernel. En particular, se analizó el desempeño de las máquinas de soporte implementadas en términos de su capacidad para detectar y clasificar fallas típicas en sensores de procesos continuos. Para cada máquina implementada, se escogió el tamaño del conjunto de entrenamiento y los valores de los hiperparámetros correspondientes a cada una a partir de una búsqueda de tipo rejilla. Los resultados mostraron que el mejor desempeño en términos de exactitud en el testeo se obtuvo para una codificación de tipo One Vs Rest, utilizando un Kernel de tipo función de base radial, para la cual se alcanzó una exactitud superior al 98%.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Máquina de Soporte Vectorial para la Detección y Clasificación de Fallas en Sensores de Registro de Datos en Procesos Continuos\",\"authors\":\"Carlos I. Sanseverinatti, Mariano M. Perdomo, Luis A. Clementi, J. R. Vega\",\"doi\":\"10.1109/ARGENCON55245.2022.9940020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En el presente trabajo se implementó un módulo para la detección de fallas en sensores de registro de variables en procesos continuos, el cual se desarrolló sobre la base de una máquina de soporte vectorial. Con el fin de obtener una arquitectura adecuada de la máquina, se estudió el desempeño del módulo para diversas implementaciones obtenidas a partir de diferentes técnicas de codificación múltiple y maquinas Kernel. En particular, se analizó el desempeño de las máquinas de soporte implementadas en términos de su capacidad para detectar y clasificar fallas típicas en sensores de procesos continuos. Para cada máquina implementada, se escogió el tamaño del conjunto de entrenamiento y los valores de los hiperparámetros correspondientes a cada una a partir de una búsqueda de tipo rejilla. Los resultados mostraron que el mejor desempeño en términos de exactitud en el testeo se obtuvo para una codificación de tipo One Vs Rest, utilizando un Kernel de tipo función de base radial, para la cual se alcanzó una exactitud superior al 98%.\",\"PeriodicalId\":318846,\"journal\":{\"name\":\"2022 IEEE Biennial Congress of Argentina (ARGENCON)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Biennial Congress of Argentina (ARGENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARGENCON55245.2022.9940020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9940020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在矢量支撑机的基础上,实现了连续过程变量记录传感器故障检测模块。为了获得合适的机器架构,研究了不同多编码技术和内核机器实现的模块性能。特别地,我们从连续过程传感器检测和分类典型故障的能力来分析所实施的支持机器的性能。对于每台实现的机器,从网格搜索中选择训练集的大小和相应的超参数值。结果表明,使用径向基函数核的One和Rest编码在测试精度方面获得了最好的性能,准确率达到98%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Máquina de Soporte Vectorial para la Detección y Clasificación de Fallas en Sensores de Registro de Datos en Procesos Continuos
En el presente trabajo se implementó un módulo para la detección de fallas en sensores de registro de variables en procesos continuos, el cual se desarrolló sobre la base de una máquina de soporte vectorial. Con el fin de obtener una arquitectura adecuada de la máquina, se estudió el desempeño del módulo para diversas implementaciones obtenidas a partir de diferentes técnicas de codificación múltiple y maquinas Kernel. En particular, se analizó el desempeño de las máquinas de soporte implementadas en términos de su capacidad para detectar y clasificar fallas típicas en sensores de procesos continuos. Para cada máquina implementada, se escogió el tamaño del conjunto de entrenamiento y los valores de los hiperparámetros correspondientes a cada una a partir de una búsqueda de tipo rejilla. Los resultados mostraron que el mejor desempeño en términos de exactitud en el testeo se obtuvo para una codificación de tipo One Vs Rest, utilizando un Kernel de tipo función de base radial, para la cual se alcanzó una exactitud superior al 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信