基于Gabor滤波的Wigner域人脸与掌纹的有效融合

Nirmala Saini, A. Sinha
{"title":"基于Gabor滤波的Wigner域人脸与掌纹的有效融合","authors":"Nirmala Saini, A. Sinha","doi":"10.1504/ijbm.2020.108482","DOIUrl":null,"url":null,"abstract":"In this paper, a new transform Gabor filtered Wigner transform (GFWT) has been proposed. In GFWT, Gabor filtering is performed on the Wigner transformed image. Wigner transform gives a simultaneous representation of an image in time and frequency domain which is further processed using Gabor filters. The proposed transform is then used to extract the features from the biometrics to develop different multimodal biometric systems. A detailed study has been carried out in which, different unimodal and multimodal systems such as feature level and score level fusion are analysed. In order to improve the performance of the system, an optimisation technique, particle swarm optimisation (PSO) is used to find the optimal parameters of the Gabor filter and to select the significant GFWT feature vector. The PSO technique not only improves the performance of the system but also able to reduce the dimension of the feature vectors. Numerical experiments are carried out on face and palmprint database to show the effectiveness of the proposed transform for different unimodal and multimodal systems.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient fusion of face and palmprint in Gabor filtered Wigner domain\",\"authors\":\"Nirmala Saini, A. Sinha\",\"doi\":\"10.1504/ijbm.2020.108482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new transform Gabor filtered Wigner transform (GFWT) has been proposed. In GFWT, Gabor filtering is performed on the Wigner transformed image. Wigner transform gives a simultaneous representation of an image in time and frequency domain which is further processed using Gabor filters. The proposed transform is then used to extract the features from the biometrics to develop different multimodal biometric systems. A detailed study has been carried out in which, different unimodal and multimodal systems such as feature level and score level fusion are analysed. In order to improve the performance of the system, an optimisation technique, particle swarm optimisation (PSO) is used to find the optimal parameters of the Gabor filter and to select the significant GFWT feature vector. The PSO technique not only improves the performance of the system but also able to reduce the dimension of the feature vectors. Numerical experiments are carried out on face and palmprint database to show the effectiveness of the proposed transform for different unimodal and multimodal systems.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbm.2020.108482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbm.2020.108482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的变换Gabor滤波Wigner变换(GFWT)。在GFWT中,对Wigner变换后的图像进行Gabor滤波。维格纳变换给出了图像在时域和频域的同时表示,并使用Gabor滤波器对图像进行进一步处理。然后利用所提出的变换从生物特征中提取特征来开发不同的多模态生物识别系统。详细分析了不同的单模态和多模态系统,如特征级和分数级融合。为了提高系统的性能,采用粒子群优化技术(PSO)寻找Gabor滤波器的最优参数,并选择显著的GFWT特征向量。粒子群算法不仅提高了系统的性能,而且能够降低特征向量的维数。在人脸和掌纹数据库上进行了数值实验,验证了所提变换对不同单峰和多峰系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient fusion of face and palmprint in Gabor filtered Wigner domain
In this paper, a new transform Gabor filtered Wigner transform (GFWT) has been proposed. In GFWT, Gabor filtering is performed on the Wigner transformed image. Wigner transform gives a simultaneous representation of an image in time and frequency domain which is further processed using Gabor filters. The proposed transform is then used to extract the features from the biometrics to develop different multimodal biometric systems. A detailed study has been carried out in which, different unimodal and multimodal systems such as feature level and score level fusion are analysed. In order to improve the performance of the system, an optimisation technique, particle swarm optimisation (PSO) is used to find the optimal parameters of the Gabor filter and to select the significant GFWT feature vector. The PSO technique not only improves the performance of the system but also able to reduce the dimension of the feature vectors. Numerical experiments are carried out on face and palmprint database to show the effectiveness of the proposed transform for different unimodal and multimodal systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信