周期晶格系统均一化能量密度的结晶性

A. Chambolle, Leonard Kreutz
{"title":"周期晶格系统均一化能量密度的结晶性","authors":"A. Chambolle, Leonard Kreutz","doi":"10.1137/21m1442073","DOIUrl":null,"url":null,"abstract":"We study the homogenized energy densities of periodic ferromagnetic Ising systems. We prove that, for finite range interactions, the homogenized energy density, identifying the effective limit, is crystalline, i.e. its Wulff crystal is a polytope, for which we can (exponentially) bound the number of vertices. This is achieved by deriving a dual representation of the energy density through a finite cell formula. This formula also allows easy numerical computations: we show a few experiments where we compute periodic patterns which minimize the anisotropy of the surface tension.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Crystallinity of the Homogenized Energy Density of Periodic Lattice Systems\",\"authors\":\"A. Chambolle, Leonard Kreutz\",\"doi\":\"10.1137/21m1442073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the homogenized energy densities of periodic ferromagnetic Ising systems. We prove that, for finite range interactions, the homogenized energy density, identifying the effective limit, is crystalline, i.e. its Wulff crystal is a polytope, for which we can (exponentially) bound the number of vertices. This is achieved by deriving a dual representation of the energy density through a finite cell formula. This formula also allows easy numerical computations: we show a few experiments where we compute periodic patterns which minimize the anisotropy of the surface tension.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1442073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1442073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了周期铁磁Ising系统的均匀化能量密度。我们证明,对于有限范围的相互作用,均质能量密度,识别有效极限,是结晶的,即它的Wulff晶体是一个多面体,我们可以(指数)限制顶点的数量。这是通过有限单元公式推导出能量密度的对偶表示来实现的。这个公式也允许简单的数值计算:我们展示了几个实验,我们计算周期模式,使表面张力的各向异性最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystallinity of the Homogenized Energy Density of Periodic Lattice Systems
We study the homogenized energy densities of periodic ferromagnetic Ising systems. We prove that, for finite range interactions, the homogenized energy density, identifying the effective limit, is crystalline, i.e. its Wulff crystal is a polytope, for which we can (exponentially) bound the number of vertices. This is achieved by deriving a dual representation of the energy density through a finite cell formula. This formula also allows easy numerical computations: we show a few experiments where we compute periodic patterns which minimize the anisotropy of the surface tension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信