测量网络的混合时间

Xenofon Foukas, Antonio Carzaniga, A. Wolf
{"title":"测量网络的混合时间","authors":"Xenofon Foukas, Antonio Carzaniga, A. Wolf","doi":"10.1109/INFOCOM.2015.7218667","DOIUrl":null,"url":null,"abstract":"Mixing time is a global property of a network that indicates how fast a random walk gains independence from its starting point. Mixing time is an essential parameter for many distributed algorithms, but especially those based on gossip. We design, implement, and evaluate a distributed protocol to measure mixing time. The protocol extends an existing algorithm that models the diffusion of information seen from each node in the network as the impulse response of a particular dynamic system. In its original formulation, the algorithm was susceptible to topology changes (or “churn”) and was evaluated only in simulation. Here we present a concrete implementation of an enhanced version of the algorithm that exploits multiple parallel runs to obtain a robust measurement, and evaluate it using a network testbed (Emulab) in combination with a peer-to-peer system (FreePastry) to assess both its performance and its ability to deal with network churn.","PeriodicalId":342583,"journal":{"name":"2015 IEEE Conference on Computer Communications (INFOCOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measuring the mixing time of a network\",\"authors\":\"Xenofon Foukas, Antonio Carzaniga, A. Wolf\",\"doi\":\"10.1109/INFOCOM.2015.7218667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixing time is a global property of a network that indicates how fast a random walk gains independence from its starting point. Mixing time is an essential parameter for many distributed algorithms, but especially those based on gossip. We design, implement, and evaluate a distributed protocol to measure mixing time. The protocol extends an existing algorithm that models the diffusion of information seen from each node in the network as the impulse response of a particular dynamic system. In its original formulation, the algorithm was susceptible to topology changes (or “churn”) and was evaluated only in simulation. Here we present a concrete implementation of an enhanced version of the algorithm that exploits multiple parallel runs to obtain a robust measurement, and evaluate it using a network testbed (Emulab) in combination with a peer-to-peer system (FreePastry) to assess both its performance and its ability to deal with network churn.\",\"PeriodicalId\":342583,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Communications (INFOCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2015.7218667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Communications (INFOCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2015.7218667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

混合时间是网络的一个全局属性,它表示随机漫步从其起点获得独立性的速度有多快。混合时间是许多分布式算法的重要参数,尤其是基于八卦的分布式算法。我们设计、实现和评估一个分布式协议来测量混合时间。该协议扩展了现有的一种算法,该算法将网络中每个节点的信息扩散建模为特定动态系统的脉冲响应。在其原始公式中,该算法容易受到拓扑变化(或“搅动”)的影响,并且仅在模拟中进行了评估。在这里,我们提出了该算法的增强版本的具体实现,该算法利用多个并行运行来获得稳健的测量,并使用网络测试平台(Emulab)结合点对点系统(freepaststry)来评估其性能和处理网络流失的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the mixing time of a network
Mixing time is a global property of a network that indicates how fast a random walk gains independence from its starting point. Mixing time is an essential parameter for many distributed algorithms, but especially those based on gossip. We design, implement, and evaluate a distributed protocol to measure mixing time. The protocol extends an existing algorithm that models the diffusion of information seen from each node in the network as the impulse response of a particular dynamic system. In its original formulation, the algorithm was susceptible to topology changes (or “churn”) and was evaluated only in simulation. Here we present a concrete implementation of an enhanced version of the algorithm that exploits multiple parallel runs to obtain a robust measurement, and evaluate it using a network testbed (Emulab) in combination with a peer-to-peer system (FreePastry) to assess both its performance and its ability to deal with network churn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信