基于逆变器资源黑盒模型的大容量电力系统稳定性分析工具

Dongsen Sun, Hanchao Liu, Maozhong Gong
{"title":"基于逆变器资源黑盒模型的大容量电力系统稳定性分析工具","authors":"Dongsen Sun, Hanchao Liu, Maozhong Gong","doi":"10.1109/IAS54023.2022.9940032","DOIUrl":null,"url":null,"abstract":"This paper presents a small-signal stability analysis tool for large-scale power systems with high penetration of inverter-based resources (IBRs). Firstly, a network transfer function matrix (NTFM), which represents the information of the system topology, transmission lines, loads, IBRs locations, etc., is derived to model the entire power system network. Secondly, small-signal perturbation method is applied to obtain the sequence impedance/admittance responses of IBRs considering the frequency cross-coupling effects. With the obtained NTFM as well as IBRs' models, a multi-input, multi-output (MIMO) feedback system is constructed, and the generalized Nyquist criterion (GNC)-based stability method is employed to analyze the stability of the entire power system. Different testing cases based on a modified IEEE-14 bus system are leveraged to verify the proposed stability analysis tool.","PeriodicalId":193587,"journal":{"name":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Stability Analysis Tool for Bulk Power Systems Using Black-Box Models of Inverter-based Resources\",\"authors\":\"Dongsen Sun, Hanchao Liu, Maozhong Gong\",\"doi\":\"10.1109/IAS54023.2022.9940032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a small-signal stability analysis tool for large-scale power systems with high penetration of inverter-based resources (IBRs). Firstly, a network transfer function matrix (NTFM), which represents the information of the system topology, transmission lines, loads, IBRs locations, etc., is derived to model the entire power system network. Secondly, small-signal perturbation method is applied to obtain the sequence impedance/admittance responses of IBRs considering the frequency cross-coupling effects. With the obtained NTFM as well as IBRs' models, a multi-input, multi-output (MIMO) feedback system is constructed, and the generalized Nyquist criterion (GNC)-based stability method is employed to analyze the stability of the entire power system. Different testing cases based on a modified IEEE-14 bus system are leveraged to verify the proposed stability analysis tool.\",\"PeriodicalId\":193587,\"journal\":{\"name\":\"2022 IEEE Industry Applications Society Annual Meeting (IAS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Industry Applications Society Annual Meeting (IAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS54023.2022.9940032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS54023.2022.9940032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种适用于具有高逆变器资源渗透率的大型电力系统的小信号稳定性分析工具。首先,推导了代表系统拓扑结构、输电线路、负荷、ibr位置等信息的网络传递函数矩阵(NTFM),对整个电力系统网络进行建模。其次,采用小信号摄动法获得了考虑频率交叉耦合效应的IBRs序列阻抗/导纳响应;利用得到的NTFM模型和IBRs模型,构建了多输入多输出(MIMO)反馈系统,并采用基于广义Nyquist准则(GNC)的稳定性方法分析了整个电力系统的稳定性。利用基于改进的IEEE-14总线系统的不同测试用例来验证所提出的稳定性分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Stability Analysis Tool for Bulk Power Systems Using Black-Box Models of Inverter-based Resources
This paper presents a small-signal stability analysis tool for large-scale power systems with high penetration of inverter-based resources (IBRs). Firstly, a network transfer function matrix (NTFM), which represents the information of the system topology, transmission lines, loads, IBRs locations, etc., is derived to model the entire power system network. Secondly, small-signal perturbation method is applied to obtain the sequence impedance/admittance responses of IBRs considering the frequency cross-coupling effects. With the obtained NTFM as well as IBRs' models, a multi-input, multi-output (MIMO) feedback system is constructed, and the generalized Nyquist criterion (GNC)-based stability method is employed to analyze the stability of the entire power system. Different testing cases based on a modified IEEE-14 bus system are leveraged to verify the proposed stability analysis tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信