基于Python大数据分析的员工岗位智能匹配模型研究

Qing-wei Shen
{"title":"基于Python大数据分析的员工岗位智能匹配模型研究","authors":"Qing-wei Shen","doi":"10.1109/ECICE55674.2022.10042840","DOIUrl":null,"url":null,"abstract":"In order to improve the efficiency and accuracy of human resource management by big data technology, support vector machines are used to complete job matching. The element sample for the employee indicator is sparsely represented to obtain the matrix. The sample is binary classification by a support vector machine to judge the matching degree of employees to positions. Finally, the random transformation function is introduced to achieve dynamic recommendations in the big data environment. The experimental results show that the algorithm has high job matching accuracy, high dynamic recommendation efficiency, and batch recommendation.","PeriodicalId":282635,"journal":{"name":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Intelligent Matching Model Between Employees and Positions Based on Python Big Data Analysis\",\"authors\":\"Qing-wei Shen\",\"doi\":\"10.1109/ECICE55674.2022.10042840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the efficiency and accuracy of human resource management by big data technology, support vector machines are used to complete job matching. The element sample for the employee indicator is sparsely represented to obtain the matrix. The sample is binary classification by a support vector machine to judge the matching degree of employees to positions. Finally, the random transformation function is introduced to achieve dynamic recommendations in the big data environment. The experimental results show that the algorithm has high job matching accuracy, high dynamic recommendation efficiency, and batch recommendation.\",\"PeriodicalId\":282635,\"journal\":{\"name\":\"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE55674.2022.10042840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE55674.2022.10042840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了利用大数据技术提高人力资源管理的效率和准确性,利用支持向量机完成岗位匹配。对员工指标的元素样本进行稀疏表示以获得矩阵。通过支持向量机对样本进行二值分类,判断员工与岗位的匹配程度。最后,引入随机变换函数,实现大数据环境下的动态推荐。实验结果表明,该算法具有较高的作业匹配精度、较高的动态推荐效率和批量推荐能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Intelligent Matching Model Between Employees and Positions Based on Python Big Data Analysis
In order to improve the efficiency and accuracy of human resource management by big data technology, support vector machines are used to complete job matching. The element sample for the employee indicator is sparsely represented to obtain the matrix. The sample is binary classification by a support vector machine to judge the matching degree of employees to positions. Finally, the random transformation function is introduced to achieve dynamic recommendations in the big data environment. The experimental results show that the algorithm has high job matching accuracy, high dynamic recommendation efficiency, and batch recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信