基于DNA数据计算系统发育似然函数的优化可重构系统

S. Berger, Nikolaos S. Alachiotis, A. Stamatakis
{"title":"基于DNA数据计算系统发育似然函数的优化可重构系统","authors":"S. Berger, Nikolaos S. Alachiotis, A. Stamatakis","doi":"10.1109/IPDPSW.2012.43","DOIUrl":null,"url":null,"abstract":"The Phylogenetic Likelihood Function (PLF) is an important statistical function for evaluating phylogenetic trees. To this end, the PLF is the computational kernel of all state-of-the-art likelihood-based phylogenetic inference programs. Typically, it accounts for more than 85% of total execution time in such programs. We present a substantially improved hardware architecture for computing the PLF based on previous experiences with implementing the PLF on reconfigurable logic. Our new design is optimized for computing the PLF on four-state (DNA) input data. It is also adapted to the computational requirements of real-world tree inference programs and completely independent of the specific tree search algorithm at hand. Furthermore, we describe how our architecture can be modified and adapted to handle general n-state data, such as protein (20 states) or RNA secondary structure data (6, 7, or 16 states, depending on the model). Finally, we designed an interface mechanism such that our PLF hardware architecture can interact with the widely-used phylogenetic inference tool RAxML. We deploy FPGA technology to verify the correctness of the architecture and to evaluate performance.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Optimized Reconfigurable System for Computing the Phylogenetic Likelihood Function on DNA Data\",\"authors\":\"S. Berger, Nikolaos S. Alachiotis, A. Stamatakis\",\"doi\":\"10.1109/IPDPSW.2012.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Phylogenetic Likelihood Function (PLF) is an important statistical function for evaluating phylogenetic trees. To this end, the PLF is the computational kernel of all state-of-the-art likelihood-based phylogenetic inference programs. Typically, it accounts for more than 85% of total execution time in such programs. We present a substantially improved hardware architecture for computing the PLF based on previous experiences with implementing the PLF on reconfigurable logic. Our new design is optimized for computing the PLF on four-state (DNA) input data. It is also adapted to the computational requirements of real-world tree inference programs and completely independent of the specific tree search algorithm at hand. Furthermore, we describe how our architecture can be modified and adapted to handle general n-state data, such as protein (20 states) or RNA secondary structure data (6, 7, or 16 states, depending on the model). Finally, we designed an interface mechanism such that our PLF hardware architecture can interact with the widely-used phylogenetic inference tool RAxML. We deploy FPGA technology to verify the correctness of the architecture and to evaluate performance.\",\"PeriodicalId\":378335,\"journal\":{\"name\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2012.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

系统发生似然函数(PLF)是评价系统发生树的重要统计函数。为此,PLF是所有最先进的基于似然的系统发育推断程序的计算内核。通常,它占这类程序总执行时间的85%以上。基于以前在可重构逻辑上实现PLF的经验,我们提出了一个用于计算PLF的大幅改进的硬件架构。我们的新设计针对四态(DNA)输入数据的PLF计算进行了优化。它也适应了现实世界的树推理程序的计算需求,完全独立于手头的特定树搜索算法。此外,我们还描述了如何修改和调整我们的架构以处理一般的n状态数据,例如蛋白质(20状态)或RNA二级结构数据(6、7或16状态,取决于模型)。最后,我们设计了一个接口机制,使我们的PLF硬件架构可以与广泛使用的系统发育推断工具RAxML交互。我们部署FPGA技术来验证架构的正确性并评估性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Reconfigurable System for Computing the Phylogenetic Likelihood Function on DNA Data
The Phylogenetic Likelihood Function (PLF) is an important statistical function for evaluating phylogenetic trees. To this end, the PLF is the computational kernel of all state-of-the-art likelihood-based phylogenetic inference programs. Typically, it accounts for more than 85% of total execution time in such programs. We present a substantially improved hardware architecture for computing the PLF based on previous experiences with implementing the PLF on reconfigurable logic. Our new design is optimized for computing the PLF on four-state (DNA) input data. It is also adapted to the computational requirements of real-world tree inference programs and completely independent of the specific tree search algorithm at hand. Furthermore, we describe how our architecture can be modified and adapted to handle general n-state data, such as protein (20 states) or RNA secondary structure data (6, 7, or 16 states, depending on the model). Finally, we designed an interface mechanism such that our PLF hardware architecture can interact with the widely-used phylogenetic inference tool RAxML. We deploy FPGA technology to verify the correctness of the architecture and to evaluate performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信