作为逆光学的计算视觉:重建光谱反射率和光源

T. Poggio, A. Hurlbert
{"title":"作为逆光学的计算视觉:重建光谱反射率和光源","authors":"T. Poggio, A. Hurlbert","doi":"10.1364/srs.1986.fd2","DOIUrl":null,"url":null,"abstract":"The standard definition of computational vision is that it is inverse optics. The direct problem - the problem of classical optics - or computer graphics - is to determine the images of three-dimensional objects. Computational vision is confronted with the inverse and ill-posed problems of recovering surface properties from the partial information contained in images. As a consequence, vision must rely on natural constraints, that is, general assumptions about the physical world to derive an ambiguous output.","PeriodicalId":262149,"journal":{"name":"Topical Meeting On Signal Recovery and Synthesis II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational vision as inverse optics: reconstructing spectral reflectances and illuminant\",\"authors\":\"T. Poggio, A. Hurlbert\",\"doi\":\"10.1364/srs.1986.fd2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard definition of computational vision is that it is inverse optics. The direct problem - the problem of classical optics - or computer graphics - is to determine the images of three-dimensional objects. Computational vision is confronted with the inverse and ill-posed problems of recovering surface properties from the partial information contained in images. As a consequence, vision must rely on natural constraints, that is, general assumptions about the physical world to derive an ambiguous output.\",\"PeriodicalId\":262149,\"journal\":{\"name\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1986.fd2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting On Signal Recovery and Synthesis II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1986.fd2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算视觉的标准定义是逆光学。直接的问题——经典光学或计算机图形学的问题——是确定三维物体的图像。计算视觉面临着从图像中包含的部分信息中恢复表面性质的逆定和不适定问题。因此,视觉必须依赖于自然约束,即对物理世界的一般假设,以获得模糊的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational vision as inverse optics: reconstructing spectral reflectances and illuminant
The standard definition of computational vision is that it is inverse optics. The direct problem - the problem of classical optics - or computer graphics - is to determine the images of three-dimensional objects. Computational vision is confronted with the inverse and ill-posed problems of recovering surface properties from the partial information contained in images. As a consequence, vision must rely on natural constraints, that is, general assumptions about the physical world to derive an ambiguous output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信