Fabian Ulreich, Elisabeth Moser, F. Olbrich, Martin Ebert, Rudolf Bierl, A. Kaup
{"title":"云覆盖下CARLA的亮度模拟——模型验证和启示","authors":"Fabian Ulreich, Elisabeth Moser, F. Olbrich, Martin Ebert, Rudolf Bierl, A. Kaup","doi":"10.1109/MetroAutomotive57488.2023.10219098","DOIUrl":null,"url":null,"abstract":"To decrease the number of kilometers driven during the development of autonomous cars or driving assistance systems, performant simulation tools are necessary. Currently, domain distance effects between simulation and reality are limiting the successful application of rendering engines in data-driven perception tasks. In order to mitigate those domain distance effects, simulation tools have to be as close to reality as possible for the given task. For optical sensors like cameras, the luminance of the scene is essential. We provide within this paper a method to measure the luminance of rendered scenes within CARLA, an often used open-source simulation environment. Thereby, it is possible to validate the environment and weather models by taking real-world measurements with photometric sensors or with the help of open-source weather data, published e.g. by the German federal service for weather data (DWD - \"Deutscher Wetterdienst\"). Employing our proposed luminance measurement, the domain gap resulting from the simulation can be specified, which makes it possible to evaluate the statements about the safety of the automated driving system determined within the simulation. We show that the ratio between global and diffuse radiation modeled by the default atmosphere models within CARLA are under limited conditions similar to real-world measurements taken by the DWD. Nevertheless, we show, that the ratio’s temporal variability in real-world situations is not modeled by CARLA.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Luminance Simulation in CARLA under Cloud Coverage - Model Validation and Implications\",\"authors\":\"Fabian Ulreich, Elisabeth Moser, F. Olbrich, Martin Ebert, Rudolf Bierl, A. Kaup\",\"doi\":\"10.1109/MetroAutomotive57488.2023.10219098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To decrease the number of kilometers driven during the development of autonomous cars or driving assistance systems, performant simulation tools are necessary. Currently, domain distance effects between simulation and reality are limiting the successful application of rendering engines in data-driven perception tasks. In order to mitigate those domain distance effects, simulation tools have to be as close to reality as possible for the given task. For optical sensors like cameras, the luminance of the scene is essential. We provide within this paper a method to measure the luminance of rendered scenes within CARLA, an often used open-source simulation environment. Thereby, it is possible to validate the environment and weather models by taking real-world measurements with photometric sensors or with the help of open-source weather data, published e.g. by the German federal service for weather data (DWD - \\\"Deutscher Wetterdienst\\\"). Employing our proposed luminance measurement, the domain gap resulting from the simulation can be specified, which makes it possible to evaluate the statements about the safety of the automated driving system determined within the simulation. We show that the ratio between global and diffuse radiation modeled by the default atmosphere models within CARLA are under limited conditions similar to real-world measurements taken by the DWD. Nevertheless, we show, that the ratio’s temporal variability in real-world situations is not modeled by CARLA.\",\"PeriodicalId\":115847,\"journal\":{\"name\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAutomotive57488.2023.10219098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Luminance Simulation in CARLA under Cloud Coverage - Model Validation and Implications
To decrease the number of kilometers driven during the development of autonomous cars or driving assistance systems, performant simulation tools are necessary. Currently, domain distance effects between simulation and reality are limiting the successful application of rendering engines in data-driven perception tasks. In order to mitigate those domain distance effects, simulation tools have to be as close to reality as possible for the given task. For optical sensors like cameras, the luminance of the scene is essential. We provide within this paper a method to measure the luminance of rendered scenes within CARLA, an often used open-source simulation environment. Thereby, it is possible to validate the environment and weather models by taking real-world measurements with photometric sensors or with the help of open-source weather data, published e.g. by the German federal service for weather data (DWD - "Deutscher Wetterdienst"). Employing our proposed luminance measurement, the domain gap resulting from the simulation can be specified, which makes it possible to evaluate the statements about the safety of the automated driving system determined within the simulation. We show that the ratio between global and diffuse radiation modeled by the default atmosphere models within CARLA are under limited conditions similar to real-world measurements taken by the DWD. Nevertheless, we show, that the ratio’s temporal variability in real-world situations is not modeled by CARLA.