细粒度情绪分类:类别不平衡对分类器性能的影响

Jasy Liew Suet Yan, Howard R. Turtle
{"title":"细粒度情绪分类:类别不平衡对分类器性能的影响","authors":"Jasy Liew Suet Yan, Howard R. Turtle","doi":"10.1109/ICCOINS49721.2021.9497181","DOIUrl":null,"url":null,"abstract":"We explore a set of machine learning experiments in fine-grained emotion classification to test different proportion of positive and negative samples in the training data with the goal to examine if class imbalance affects classifier performance. The class distribution in a tweet corpus (EmoTweet-28) labelled with 28 emotion categories varies significantly with the largest category (happiness) occurring 11.5% and the smallest category occurring only 0.2%. For each emotion category, there are far more negative examples than positive examples. Unlike conventional wisdom, downsampling the data in our skewed corpus did not improve classifier performance. However, we found that increasing the negative examples in the training data leads to lower recall but higher precision. Demonstrating how the ratio of positive and negative examples in the training data affect the performance of emotion classifiers is the main contribution of this study.","PeriodicalId":245662,"journal":{"name":"2021 International Conference on Computer & Information Sciences (ICCOINS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-grained Emotion Classification: Class Imbalance Effects on Classifier Performance\",\"authors\":\"Jasy Liew Suet Yan, Howard R. Turtle\",\"doi\":\"10.1109/ICCOINS49721.2021.9497181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore a set of machine learning experiments in fine-grained emotion classification to test different proportion of positive and negative samples in the training data with the goal to examine if class imbalance affects classifier performance. The class distribution in a tweet corpus (EmoTweet-28) labelled with 28 emotion categories varies significantly with the largest category (happiness) occurring 11.5% and the smallest category occurring only 0.2%. For each emotion category, there are far more negative examples than positive examples. Unlike conventional wisdom, downsampling the data in our skewed corpus did not improve classifier performance. However, we found that increasing the negative examples in the training data leads to lower recall but higher precision. Demonstrating how the ratio of positive and negative examples in the training data affect the performance of emotion classifiers is the main contribution of this study.\",\"PeriodicalId\":245662,\"journal\":{\"name\":\"2021 International Conference on Computer & Information Sciences (ICCOINS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computer & Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS49721.2021.9497181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer & Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS49721.2021.9497181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了一组细粒度情绪分类的机器学习实验,以测试训练数据中不同比例的正样本和负样本,目的是检验类别不平衡是否会影响分类器的性能。在tweet语料库(EmoTweet-28)中,标记有28种情绪类别的类别分布差异很大,最大类别(快乐)占11.5%,最小类别仅占0.2%。对于每一种情绪类别,消极的例子远远多于积极的例子。与传统智慧不同,在倾斜语料库中对数据进行降采样并没有提高分类器的性能。然而,我们发现在训练数据中增加负例会导致召回率降低,但准确率提高。本研究的主要贡献是展示了训练数据中积极和消极例子的比例如何影响情绪分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-grained Emotion Classification: Class Imbalance Effects on Classifier Performance
We explore a set of machine learning experiments in fine-grained emotion classification to test different proportion of positive and negative samples in the training data with the goal to examine if class imbalance affects classifier performance. The class distribution in a tweet corpus (EmoTweet-28) labelled with 28 emotion categories varies significantly with the largest category (happiness) occurring 11.5% and the smallest category occurring only 0.2%. For each emotion category, there are far more negative examples than positive examples. Unlike conventional wisdom, downsampling the data in our skewed corpus did not improve classifier performance. However, we found that increasing the negative examples in the training data leads to lower recall but higher precision. Demonstrating how the ratio of positive and negative examples in the training data affect the performance of emotion classifiers is the main contribution of this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信