基于迭代清洗方法的类不平衡认知数据无监督异常检测

Robert K. L. Kennedy, Zahra Salekshahrezaee, T. Khoshgoftaar
{"title":"基于迭代清洗方法的类不平衡认知数据无监督异常检测","authors":"Robert K. L. Kennedy, Zahra Salekshahrezaee, T. Khoshgoftaar","doi":"10.1109/IRI58017.2023.00060","DOIUrl":null,"url":null,"abstract":"The presence of class imbalance in machine learning datasets is a pervasive challenge that often hampers the effectiveness of traditional machine learning models. In the context of anomaly detection, the instances in the minority class are the ones of most interest. To address this issue, we evaluate an unsupervised approach that uses an iterative cleaning process for anomaly detection on cognition data. We conduct experiments on two cognition datasets, one has a large degree of class imbalance and the other is balanced. Our findings show that the unsupervised iterative cleaning approach outperforms two other unsupervised models, namely Isolation Forest and Copula-Based Outlier Detector, in the class-imbalanced dataset. The approach does not outperform both the other two models on the balanced dataset, making the approach presented particularly well-suited when there is a large class imbalance in cognition data.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Anomaly Detection of Class Imbalanced Cognition Data Using an Iterative Cleaning Method\",\"authors\":\"Robert K. L. Kennedy, Zahra Salekshahrezaee, T. Khoshgoftaar\",\"doi\":\"10.1109/IRI58017.2023.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of class imbalance in machine learning datasets is a pervasive challenge that often hampers the effectiveness of traditional machine learning models. In the context of anomaly detection, the instances in the minority class are the ones of most interest. To address this issue, we evaluate an unsupervised approach that uses an iterative cleaning process for anomaly detection on cognition data. We conduct experiments on two cognition datasets, one has a large degree of class imbalance and the other is balanced. Our findings show that the unsupervised iterative cleaning approach outperforms two other unsupervised models, namely Isolation Forest and Copula-Based Outlier Detector, in the class-imbalanced dataset. The approach does not outperform both the other two models on the balanced dataset, making the approach presented particularly well-suited when there is a large class imbalance in cognition data.\",\"PeriodicalId\":290818,\"journal\":{\"name\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI58017.2023.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习数据集中存在的类不平衡是一个普遍存在的挑战,它经常阻碍传统机器学习模型的有效性。在异常检测的上下文中,少数派类中的实例是最令人感兴趣的。为了解决这个问题,我们评估了一种无监督的方法,该方法使用迭代清洗过程对认知数据进行异常检测。我们在两个认知数据集上进行实验,一个数据集有很大程度的类不平衡,另一个数据集是平衡的。我们的研究结果表明,在类不平衡数据集中,无监督迭代清洗方法优于其他两种无监督模型,即隔离森林和基于copula的离群值检测器。该方法在平衡数据集上的表现并不优于其他两种模型,使得该方法特别适用于认知数据中存在较大类别不平衡的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Anomaly Detection of Class Imbalanced Cognition Data Using an Iterative Cleaning Method
The presence of class imbalance in machine learning datasets is a pervasive challenge that often hampers the effectiveness of traditional machine learning models. In the context of anomaly detection, the instances in the minority class are the ones of most interest. To address this issue, we evaluate an unsupervised approach that uses an iterative cleaning process for anomaly detection on cognition data. We conduct experiments on two cognition datasets, one has a large degree of class imbalance and the other is balanced. Our findings show that the unsupervised iterative cleaning approach outperforms two other unsupervised models, namely Isolation Forest and Copula-Based Outlier Detector, in the class-imbalanced dataset. The approach does not outperform both the other two models on the balanced dataset, making the approach presented particularly well-suited when there is a large class imbalance in cognition data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信