通过软件驱动的广域网实现高利用率

C. Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, M. Nanduri, Roger Wattenhofer
{"title":"通过软件驱动的广域网实现高利用率","authors":"C. Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, M. Nanduri, Roger Wattenhofer","doi":"10.1145/2486001.2486012","DOIUrl":null,"url":null,"abstract":"We present SWAN, a system that boosts the utilization of inter-datacenter networks by centrally controlling when and how much traffic each service sends and frequently re-configuring the network's data plane to match current traffic demand. But done simplistically, these re-configurations can also cause severe, transient congestion because different switches may apply updates at different times. We develop a novel technique that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches. Further, to scale to large networks in the face of limited forwarding table capacity, SWAN greedily selects a small set of entries that can best satisfy current demand. It updates this set without disrupting traffic by leveraging a small amount of scratch capacity in forwarding tables. Experiments using a testbed prototype and data-driven simulations of two production networks show that SWAN carries 60% more traffic than the current practice.","PeriodicalId":159374,"journal":{"name":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1113","resultStr":"{\"title\":\"Achieving high utilization with software-driven WAN\",\"authors\":\"C. Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, M. Nanduri, Roger Wattenhofer\",\"doi\":\"10.1145/2486001.2486012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present SWAN, a system that boosts the utilization of inter-datacenter networks by centrally controlling when and how much traffic each service sends and frequently re-configuring the network's data plane to match current traffic demand. But done simplistically, these re-configurations can also cause severe, transient congestion because different switches may apply updates at different times. We develop a novel technique that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches. Further, to scale to large networks in the face of limited forwarding table capacity, SWAN greedily selects a small set of entries that can best satisfy current demand. It updates this set without disrupting traffic by leveraging a small amount of scratch capacity in forwarding tables. Experiments using a testbed prototype and data-driven simulations of two production networks show that SWAN carries 60% more traffic than the current practice.\",\"PeriodicalId\":159374,\"journal\":{\"name\":\"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2486001.2486012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486001.2486012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1113

摘要

我们提出了SWAN系统,它通过集中控制每个服务发送的时间和流量,并频繁地重新配置网络的数据平面来匹配当前的流量需求,从而提高了数据中心间网络的利用率。但是简单地说,这些重新配置也会导致严重的暂时拥塞,因为不同的交换机可能在不同的时间应用更新。我们开发了一种新技术,利用链路上的少量刮擦容量,以一种可证明无拥塞的方式应用更新,而无需对单个交换机上的更新顺序和时间进行任何假设。此外,为了在转发表容量有限的情况下扩展到大型网络,SWAN会贪婪地选择最能满足当前需求的一小部分表项。它通过利用转发表中的少量刮擦容量来更新此集,而不会中断流量。使用试验台原型和两个生产网络的数据驱动模拟进行的实验表明,SWAN比目前的实践多承载60%的流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving high utilization with software-driven WAN
We present SWAN, a system that boosts the utilization of inter-datacenter networks by centrally controlling when and how much traffic each service sends and frequently re-configuring the network's data plane to match current traffic demand. But done simplistically, these re-configurations can also cause severe, transient congestion because different switches may apply updates at different times. We develop a novel technique that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches. Further, to scale to large networks in the face of limited forwarding table capacity, SWAN greedily selects a small set of entries that can best satisfy current demand. It updates this set without disrupting traffic by leveraging a small amount of scratch capacity in forwarding tables. Experiments using a testbed prototype and data-driven simulations of two production networks show that SWAN carries 60% more traffic than the current practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信