Bfloat16格式在专用乘法器数量有限的FPGA深度学习嵌入式加速器中的应用

B. B. Petrov
{"title":"Bfloat16格式在专用乘法器数量有限的FPGA深度学习嵌入式加速器中的应用","authors":"B. B. Petrov","doi":"10.1109/TELECOM50385.2020.9299565","DOIUrl":null,"url":null,"abstract":"The hardware base of Deep Learning Neural Network (DLNN) realization methods are remote cloud services, Graphical Processing Units (GPU) and Field Programmable Gate Arrays (FPGA). The one of the main differences between FPGA devices is important for DLNN realization is quantity of dedicated multipliers in DSP blocks. In this article a method for optimization based on bfloat16 data format useful for FPGA devices with small quantities of DSP blocks is described.","PeriodicalId":300010,"journal":{"name":"2020 28th National Conference with International Participation (TELECOM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using of Bfloat16 Format in Deep Learning Embedded Accelerators based on FPGA with Limited Quantity of Dedicated Multipliers\",\"authors\":\"B. B. Petrov\",\"doi\":\"10.1109/TELECOM50385.2020.9299565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hardware base of Deep Learning Neural Network (DLNN) realization methods are remote cloud services, Graphical Processing Units (GPU) and Field Programmable Gate Arrays (FPGA). The one of the main differences between FPGA devices is important for DLNN realization is quantity of dedicated multipliers in DSP blocks. In this article a method for optimization based on bfloat16 data format useful for FPGA devices with small quantities of DSP blocks is described.\",\"PeriodicalId\":300010,\"journal\":{\"name\":\"2020 28th National Conference with International Participation (TELECOM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th National Conference with International Participation (TELECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELECOM50385.2020.9299565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM50385.2020.9299565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习神经网络(DLNN)实现方法的硬件基础是远程云服务、图形处理单元(GPU)和现场可编程门阵列(FPGA)。FPGA器件之间的主要区别之一是DSP模块中专用乘法器的数量,这对DLNN的实现很重要。本文介绍了一种基于bfloat16数据格式的优化方法,该方法适用于带有少量DSP块的FPGA器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using of Bfloat16 Format in Deep Learning Embedded Accelerators based on FPGA with Limited Quantity of Dedicated Multipliers
The hardware base of Deep Learning Neural Network (DLNN) realization methods are remote cloud services, Graphical Processing Units (GPU) and Field Programmable Gate Arrays (FPGA). The one of the main differences between FPGA devices is important for DLNN realization is quantity of dedicated multipliers in DSP blocks. In this article a method for optimization based on bfloat16 data format useful for FPGA devices with small quantities of DSP blocks is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信