模糊和下采样变换的不变表示

Huxiang Gu, Leibo Joel, Anselmi Fabio, Chunhong Pan, T. Poggio
{"title":"模糊和下采样变换的不变表示","authors":"Huxiang Gu, Leibo Joel, Anselmi Fabio, Chunhong Pan, T. Poggio","doi":"10.1109/ICIP.2016.7533029","DOIUrl":null,"url":null,"abstract":"Invariant representations of images can significantly reduce the sample complexity of a classifier performing object identification or categorization as shown in a recent analysis of invariant representations for object recognition. In the case of geometric transformations of images the theory [1] shows how invariant signatures can be learned in a biologically plausible way from unsupervised observations of the transformations of a set of randomly chosen template images. Here we extend the theory to non-geometric transformations such as blur and down-sampling. The proposed algorithm achieve an invariant representation via two simple biologically-plausible steps: 1. compute normalized dot products of the input with the stored transformations of each template, and 2. for each template compute the statistics of the resulting set of values such as the histogram or moments. The performance of our system on challenging blurred and low resolution face matching tasks exceeds the previous state-of-the-art by a large margin which grows with increasing image corruption.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant representation for blur and down-sampling transformations\",\"authors\":\"Huxiang Gu, Leibo Joel, Anselmi Fabio, Chunhong Pan, T. Poggio\",\"doi\":\"10.1109/ICIP.2016.7533029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Invariant representations of images can significantly reduce the sample complexity of a classifier performing object identification or categorization as shown in a recent analysis of invariant representations for object recognition. In the case of geometric transformations of images the theory [1] shows how invariant signatures can be learned in a biologically plausible way from unsupervised observations of the transformations of a set of randomly chosen template images. Here we extend the theory to non-geometric transformations such as blur and down-sampling. The proposed algorithm achieve an invariant representation via two simple biologically-plausible steps: 1. compute normalized dot products of the input with the stored transformations of each template, and 2. for each template compute the statistics of the resulting set of values such as the histogram or moments. The performance of our system on challenging blurred and low resolution face matching tasks exceeds the previous state-of-the-art by a large margin which grows with increasing image corruption.\",\"PeriodicalId\":147245,\"journal\":{\"name\":\"International Conference on Information Photonics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7533029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像的不变表示可以显着降低分类器执行对象识别或分类的样本复杂性,如最近对对象识别的不变表示的分析所示。在图像的几何变换的情况下,理论[1]显示了如何从一组随机选择的模板图像的变换的无监督观察中以生物学上合理的方式学习不变签名。在这里,我们将理论扩展到非几何变换,如模糊和下采样。提出的算法通过两个简单的、生物学上合理的步骤来实现不变表示:用每个模板存储的转换计算输入的归一化点积;对于每个模板,计算结果值集(如直方图或矩)的统计信息。我们的系统在具有挑战性的模糊和低分辨率人脸匹配任务上的性能大大超过了以前的最先进的技术,并且随着图像损坏的增加而增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant representation for blur and down-sampling transformations
Invariant representations of images can significantly reduce the sample complexity of a classifier performing object identification or categorization as shown in a recent analysis of invariant representations for object recognition. In the case of geometric transformations of images the theory [1] shows how invariant signatures can be learned in a biologically plausible way from unsupervised observations of the transformations of a set of randomly chosen template images. Here we extend the theory to non-geometric transformations such as blur and down-sampling. The proposed algorithm achieve an invariant representation via two simple biologically-plausible steps: 1. compute normalized dot products of the input with the stored transformations of each template, and 2. for each template compute the statistics of the resulting set of values such as the histogram or moments. The performance of our system on challenging blurred and low resolution face matching tasks exceeds the previous state-of-the-art by a large margin which grows with increasing image corruption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信