具有箱形约束的上行高斯信道上的多波束多波束分解方法

P. Wan, Zhu Wang, Huaqiang Yuan, Jiliang Wang, Jinling Zhang
{"title":"具有箱形约束的上行高斯信道上的多波束多波束分解方法","authors":"P. Wan, Zhu Wang, Huaqiang Yuan, Jiliang Wang, Jinling Zhang","doi":"10.1145/3323679.3326519","DOIUrl":null,"url":null,"abstract":"The rate capacity region of an uplink Gaussian channel is a generalized symmetric polymatroid. Practical applications impose additional lower and upper bounds on the rate allocations, which are represented by box constraints. A fundamental scheduling problem over an uplink Gaussian channel is to seek a rate allocation maximizing the weighted sum-rate (MWSR) subject to the box constraints. The best-known algorithm for this problem has time complexity O (n5 lnO(1) n). In this paper, we take a polymatroidal approach to developing a quadratic-time greedy algorithm and a linearithmic-time divide-and-conquer algorithm. A key ingredient of these two algorithms is a linear-time algorithm for minimizing the difference between a generalized symmetric rank function and a modular function after a linearithmic-time ordering.","PeriodicalId":205641,"journal":{"name":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MWSR over an Uplink Gaussian Channel with Box Constraints: A Polymatroidal Approach\",\"authors\":\"P. Wan, Zhu Wang, Huaqiang Yuan, Jiliang Wang, Jinling Zhang\",\"doi\":\"10.1145/3323679.3326519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rate capacity region of an uplink Gaussian channel is a generalized symmetric polymatroid. Practical applications impose additional lower and upper bounds on the rate allocations, which are represented by box constraints. A fundamental scheduling problem over an uplink Gaussian channel is to seek a rate allocation maximizing the weighted sum-rate (MWSR) subject to the box constraints. The best-known algorithm for this problem has time complexity O (n5 lnO(1) n). In this paper, we take a polymatroidal approach to developing a quadratic-time greedy algorithm and a linearithmic-time divide-and-conquer algorithm. A key ingredient of these two algorithms is a linear-time algorithm for minimizing the difference between a generalized symmetric rank function and a modular function after a linearithmic-time ordering.\",\"PeriodicalId\":205641,\"journal\":{\"name\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323679.3326519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323679.3326519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上行高斯信道的速率容量区域是一个广义对称多边形。实际应用对费率分配施加了额外的下限和上限,这由框约束表示。在上行高斯信道上,一个基本的调度问题是在盒约束下寻求使加权和速率(MWSR)最大化的速率分配。最著名的求解该问题的算法的时间复杂度为O(n5 lnO(1) n)。在本文中,我们采用多矩阵方法来开发二次时间贪婪算法和线性时间分治算法。这两种算法的一个关键组成部分是线性时间算法,用于在线性时间排序后最小化广义对称秩函数与模函数之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MWSR over an Uplink Gaussian Channel with Box Constraints: A Polymatroidal Approach
The rate capacity region of an uplink Gaussian channel is a generalized symmetric polymatroid. Practical applications impose additional lower and upper bounds on the rate allocations, which are represented by box constraints. A fundamental scheduling problem over an uplink Gaussian channel is to seek a rate allocation maximizing the weighted sum-rate (MWSR) subject to the box constraints. The best-known algorithm for this problem has time complexity O (n5 lnO(1) n). In this paper, we take a polymatroidal approach to developing a quadratic-time greedy algorithm and a linearithmic-time divide-and-conquer algorithm. A key ingredient of these two algorithms is a linear-time algorithm for minimizing the difference between a generalized symmetric rank function and a modular function after a linearithmic-time ordering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信