雾计算中可扩展的高效互认证策略

Jatna Bavishi, M. S. Shaikh, Reema Patel
{"title":"雾计算中可扩展的高效互认证策略","authors":"Jatna Bavishi, M. S. Shaikh, Reema Patel","doi":"10.1109/MobileCloud48802.2020.00019","DOIUrl":null,"url":null,"abstract":"Fog Computing paradigm extends the cloud computing to the edge of the network to resolve the problem of latency but this introduces new security and privacy issues. So, it is necessary that a user must be authenticated before initiating data exchange in order to preserve the integrity. Secondly, in fog computing, fog node must also be authorized for ensuring the proper behaviour of fog node and validate that the fog node is not corrupted. Hence, we proposed a mutual authentication scheme which verifies both the fog node and the end user before the transfer of data. Traditional authentication protocol uses digital certificate and digital signature which faces the problem of scalability and more complexity respectively. So, in the proposed architecture, the problem of scalability and complexity is reduced to a greater extent compared to traditional authentication techniques. The proposed scheme also ensures multi-factor authentication of the user before sending the data and it is way too efficient.","PeriodicalId":241174,"journal":{"name":"2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable and Efficient Mutual Authentication Strategy in Fog Computing\",\"authors\":\"Jatna Bavishi, M. S. Shaikh, Reema Patel\",\"doi\":\"10.1109/MobileCloud48802.2020.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog Computing paradigm extends the cloud computing to the edge of the network to resolve the problem of latency but this introduces new security and privacy issues. So, it is necessary that a user must be authenticated before initiating data exchange in order to preserve the integrity. Secondly, in fog computing, fog node must also be authorized for ensuring the proper behaviour of fog node and validate that the fog node is not corrupted. Hence, we proposed a mutual authentication scheme which verifies both the fog node and the end user before the transfer of data. Traditional authentication protocol uses digital certificate and digital signature which faces the problem of scalability and more complexity respectively. So, in the proposed architecture, the problem of scalability and complexity is reduced to a greater extent compared to traditional authentication techniques. The proposed scheme also ensures multi-factor authentication of the user before sending the data and it is way too efficient.\",\"PeriodicalId\":241174,\"journal\":{\"name\":\"2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MobileCloud48802.2020.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MobileCloud48802.2020.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

雾计算范式将云计算扩展到网络边缘以解决延迟问题,但这引入了新的安全和隐私问题。因此,在初始化数据交换之前,必须对用户进行身份验证,以保持完整性。其次,在雾计算中,还必须对雾节点进行授权,以确保雾节点的正常行为,并验证雾节点没有损坏。因此,我们提出了一种在数据传输前对雾节点和最终用户进行验证的相互认证方案。传统的认证协议采用数字证书和数字签名,分别面临着可扩展性和复杂性较大的问题。因此,与传统的身份验证技术相比,所提出的体系结构在很大程度上降低了可伸缩性和复杂性的问题。该方案还保证了在发送数据之前对用户进行多因素认证,效率过高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable and Efficient Mutual Authentication Strategy in Fog Computing
Fog Computing paradigm extends the cloud computing to the edge of the network to resolve the problem of latency but this introduces new security and privacy issues. So, it is necessary that a user must be authenticated before initiating data exchange in order to preserve the integrity. Secondly, in fog computing, fog node must also be authorized for ensuring the proper behaviour of fog node and validate that the fog node is not corrupted. Hence, we proposed a mutual authentication scheme which verifies both the fog node and the end user before the transfer of data. Traditional authentication protocol uses digital certificate and digital signature which faces the problem of scalability and more complexity respectively. So, in the proposed architecture, the problem of scalability and complexity is reduced to a greater extent compared to traditional authentication techniques. The proposed scheme also ensures multi-factor authentication of the user before sending the data and it is way too efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信