基于人工神经网络的地震射线追踪方法

N. N. Shilov, S. Grubas, A. Duchkov
{"title":"基于人工神经网络的地震射线追踪方法","authors":"N. N. Shilov, S. Grubas, A. Duchkov","doi":"10.25205/978-5-4437-1251-2-87-90","DOIUrl":null,"url":null,"abstract":"In this work we investigate the potential of seismic ray tracing based on the seismic travel-time field (i.e., solution of the eikonal equation) computed using artificial neural networks and conventional finite-differences. In a series of numerical tests, we show that the network-based eikonal solver requires considerably less dense computational grid than the finite-difference method.","PeriodicalId":203470,"journal":{"name":"Trofimuk Readings - 2021: Proceedings of the All-Russian Youth Scientific Conference with the Participation of Foreign Scientists","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEISMIC RAY TRACING USING ANN-BASED EIKONAL SOLVER\",\"authors\":\"N. N. Shilov, S. Grubas, A. Duchkov\",\"doi\":\"10.25205/978-5-4437-1251-2-87-90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate the potential of seismic ray tracing based on the seismic travel-time field (i.e., solution of the eikonal equation) computed using artificial neural networks and conventional finite-differences. In a series of numerical tests, we show that the network-based eikonal solver requires considerably less dense computational grid than the finite-difference method.\",\"PeriodicalId\":203470,\"journal\":{\"name\":\"Trofimuk Readings - 2021: Proceedings of the All-Russian Youth Scientific Conference with the Participation of Foreign Scientists\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trofimuk Readings - 2021: Proceedings of the All-Russian Youth Scientific Conference with the Participation of Foreign Scientists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25205/978-5-4437-1251-2-87-90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trofimuk Readings - 2021: Proceedings of the All-Russian Youth Scientific Conference with the Participation of Foreign Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/978-5-4437-1251-2-87-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了利用人工神经网络和传统有限差分计算的基于地震走时场(即eikonal方程的解)的地震射线追踪的潜力。在一系列的数值试验中,我们表明基于网络的eikonal求解器比有限差分法需要更少的密集计算网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEISMIC RAY TRACING USING ANN-BASED EIKONAL SOLVER
In this work we investigate the potential of seismic ray tracing based on the seismic travel-time field (i.e., solution of the eikonal equation) computed using artificial neural networks and conventional finite-differences. In a series of numerical tests, we show that the network-based eikonal solver requires considerably less dense computational grid than the finite-difference method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信