透视立体视觉下运动参数的可识别性

H. Kano, H. Fujioka, Xinkai Chen
{"title":"透视立体视觉下运动参数的可识别性","authors":"H. Kano, H. Fujioka, Xinkai Chen","doi":"10.1109/CDC.2004.1429277","DOIUrl":null,"url":null,"abstract":"We consider a problem of recovering motion of object moving in space under perspective observation. It is assumed that the motion equation is described by a linear system with unknown constant motion parameters and that a single feature point on the object is perspectively observed by two cameras. Then we analyze the identifiability of motion parameters from the stereo image data observed over an interval of time. The identifiability problem is solved by employing theories on linear dynamical systems. It is shown that the parameters are identifiable generically. Moreover, the only cases where the parameters can not be determined uniquely imply very much restrictive motions, confined either in certain planes or lines, in which case any identification algorithms will fail. Moreover whenever the parameters can be determined uniquely, the parameters can be recovered from stereo image data over any time interval of arbitrary length. The problem is also analyzed in discrete-time settings, which can be used far the case of continuous-time motion with discrete-time observations.","PeriodicalId":254457,"journal":{"name":"2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifiability of motion parameters under perspective stereo vision\",\"authors\":\"H. Kano, H. Fujioka, Xinkai Chen\",\"doi\":\"10.1109/CDC.2004.1429277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a problem of recovering motion of object moving in space under perspective observation. It is assumed that the motion equation is described by a linear system with unknown constant motion parameters and that a single feature point on the object is perspectively observed by two cameras. Then we analyze the identifiability of motion parameters from the stereo image data observed over an interval of time. The identifiability problem is solved by employing theories on linear dynamical systems. It is shown that the parameters are identifiable generically. Moreover, the only cases where the parameters can not be determined uniquely imply very much restrictive motions, confined either in certain planes or lines, in which case any identification algorithms will fail. Moreover whenever the parameters can be determined uniquely, the parameters can be recovered from stereo image data over any time interval of arbitrary length. The problem is also analyzed in discrete-time settings, which can be used far the case of continuous-time motion with discrete-time observations.\",\"PeriodicalId\":254457,\"journal\":{\"name\":\"2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2004.1429277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2004.1429277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了透视观测下空间运动物体的运动恢复问题。假设运动方程是用一个未知恒定运动参数的线性系统来描述的,物体上的单个特征点由两台摄像机透视观察。然后,我们从一段时间内观察到的立体图像数据中分析运动参数的可识别性。利用线性动力系统的理论解决了可辨识性问题。结果表明,参数是一般可识别的。此外,参数不能唯一确定的唯一情况意味着非常严格的运动,限制在某些平面或直线上,在这种情况下,任何识别算法都将失败。此外,只要参数能够唯一确定,则可以在任意长度的任何时间间隔内从立体图像数据中恢复参数。本文还分析了离散时间设置下的问题,该方法可用于具有离散时间观测的连续时间运动的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifiability of motion parameters under perspective stereo vision
We consider a problem of recovering motion of object moving in space under perspective observation. It is assumed that the motion equation is described by a linear system with unknown constant motion parameters and that a single feature point on the object is perspectively observed by two cameras. Then we analyze the identifiability of motion parameters from the stereo image data observed over an interval of time. The identifiability problem is solved by employing theories on linear dynamical systems. It is shown that the parameters are identifiable generically. Moreover, the only cases where the parameters can not be determined uniquely imply very much restrictive motions, confined either in certain planes or lines, in which case any identification algorithms will fail. Moreover whenever the parameters can be determined uniquely, the parameters can be recovered from stereo image data over any time interval of arbitrary length. The problem is also analyzed in discrete-time settings, which can be used far the case of continuous-time motion with discrete-time observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信