利用机器学习方法对胞内细胞器运动进行三维纳米尺度跟踪数据分析

Seohyun Lee, Hyuno Kim, M. Ishikawa, H. Higuchi
{"title":"利用机器学习方法对胞内细胞器运动进行三维纳米尺度跟踪数据分析","authors":"Seohyun Lee, Hyuno Kim, M. Ishikawa, H. Higuchi","doi":"10.1109/ICAIIC.2019.8669003","DOIUrl":null,"url":null,"abstract":"Tracking of intracellular organelle movement such as vesicle includes crucial information in biomedicine. To achieve more accurate three-dimensional localization of the target organelle, superresolution imaging microscopy and image processing methods have been developed and applied to many nanoscale tracking systems. Although such recent advances in microscopy imaging have enabled us to gather a tremendous amount of tracking data, the details of the movement including the interaction between cytoskeletons are not yet fully explained. In the present work, we suggest a machine learning approach to clarify the problem in tracking data analysis, as an initial trial to exploit artificial intelligence in distinguishing and classifying the detail features of the vesicle-cytoskeleton interactions.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"3D Nanoscale Tracking Data Analysis for Intracellular Organelle Movement using Machine Learning Approach\",\"authors\":\"Seohyun Lee, Hyuno Kim, M. Ishikawa, H. Higuchi\",\"doi\":\"10.1109/ICAIIC.2019.8669003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking of intracellular organelle movement such as vesicle includes crucial information in biomedicine. To achieve more accurate three-dimensional localization of the target organelle, superresolution imaging microscopy and image processing methods have been developed and applied to many nanoscale tracking systems. Although such recent advances in microscopy imaging have enabled us to gather a tremendous amount of tracking data, the details of the movement including the interaction between cytoskeletons are not yet fully explained. In the present work, we suggest a machine learning approach to clarify the problem in tracking data analysis, as an initial trial to exploit artificial intelligence in distinguishing and classifying the detail features of the vesicle-cytoskeleton interactions.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对囊泡等胞内细胞器运动的跟踪是生物医学研究的重要内容。为了实现更精确的目标细胞器的三维定位,超分辨率成像显微镜和图像处理方法已经发展并应用于许多纳米级跟踪系统。尽管显微镜成像技术的最新进展使我们能够收集到大量的跟踪数据,但包括细胞骨架之间相互作用在内的运动细节尚未得到充分解释。在目前的工作中,我们提出了一种机器学习方法来澄清跟踪数据分析中的问题,作为利用人工智能区分和分类囊泡-细胞骨架相互作用细节特征的初步尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Nanoscale Tracking Data Analysis for Intracellular Organelle Movement using Machine Learning Approach
Tracking of intracellular organelle movement such as vesicle includes crucial information in biomedicine. To achieve more accurate three-dimensional localization of the target organelle, superresolution imaging microscopy and image processing methods have been developed and applied to many nanoscale tracking systems. Although such recent advances in microscopy imaging have enabled us to gather a tremendous amount of tracking data, the details of the movement including the interaction between cytoskeletons are not yet fully explained. In the present work, we suggest a machine learning approach to clarify the problem in tracking data analysis, as an initial trial to exploit artificial intelligence in distinguishing and classifying the detail features of the vesicle-cytoskeleton interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信