{"title":"从模拟时间数据预测社交网络用户抑郁症","authors":"Akkapon Wongkoblap, Miguel A. Vadillo, V. Curcin","doi":"10.1109/EUROCON.2019.8861514","DOIUrl":null,"url":null,"abstract":"Mental health issues are widely accepted as one of the most prominent health challenges in the world, with over 300 million people currently suffering from depression alone. With massive volumes of user-generated data on social networking platforms, researchers are increasingly using machine learning to determine whether this content can be used to detect mental health problems in users. This study aims to investigate whether training a predictive model with multiple instance learning (MIL) via Long Short-Term Memory (LSTM) and gated recurrent unit (GRU) can improve the performance of a predictive model to detect social network users with depression. The power of MIL is to learn from user-level labels to identify post-level labels. By combining every possibility of posts label category, it can generate temporal posting profiles which can then be used to classify users with depression. This study highlights that training a MIL model via LSTM and GRU can improve the accuracy of a MIL model trained with convolutional neural networks.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting Social Network Users with Depression from Simulated Temporal Data\",\"authors\":\"Akkapon Wongkoblap, Miguel A. Vadillo, V. Curcin\",\"doi\":\"10.1109/EUROCON.2019.8861514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mental health issues are widely accepted as one of the most prominent health challenges in the world, with over 300 million people currently suffering from depression alone. With massive volumes of user-generated data on social networking platforms, researchers are increasingly using machine learning to determine whether this content can be used to detect mental health problems in users. This study aims to investigate whether training a predictive model with multiple instance learning (MIL) via Long Short-Term Memory (LSTM) and gated recurrent unit (GRU) can improve the performance of a predictive model to detect social network users with depression. The power of MIL is to learn from user-level labels to identify post-level labels. By combining every possibility of posts label category, it can generate temporal posting profiles which can then be used to classify users with depression. This study highlights that training a MIL model via LSTM and GRU can improve the accuracy of a MIL model trained with convolutional neural networks.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Social Network Users with Depression from Simulated Temporal Data
Mental health issues are widely accepted as one of the most prominent health challenges in the world, with over 300 million people currently suffering from depression alone. With massive volumes of user-generated data on social networking platforms, researchers are increasingly using machine learning to determine whether this content can be used to detect mental health problems in users. This study aims to investigate whether training a predictive model with multiple instance learning (MIL) via Long Short-Term Memory (LSTM) and gated recurrent unit (GRU) can improve the performance of a predictive model to detect social network users with depression. The power of MIL is to learn from user-level labels to identify post-level labels. By combining every possibility of posts label category, it can generate temporal posting profiles which can then be used to classify users with depression. This study highlights that training a MIL model via LSTM and GRU can improve the accuracy of a MIL model trained with convolutional neural networks.