Naïve手势识别的贝叶斯分类器

Imanuel Simatupang, D. Pamungkas, S. K. Risandriya
{"title":"Naïve手势识别的贝叶斯分类器","authors":"Imanuel Simatupang, D. Pamungkas, S. K. Risandriya","doi":"10.5220/0010352601100114","DOIUrl":null,"url":null,"abstract":": This paper provides recognizing the five gestures of the fingers using Naïve Bayes method. The electromyography signal (EMG) is utilized to recognize the fingers movement. A myo armband is used to obtain the signal. The average success rate of the system is about 90.61%. To verify the results, the outputs of the system are used to control a mobile robot. The results show that the system is able to control the movement of the robot.","PeriodicalId":103441,"journal":{"name":"Proceedings of the 3rd International Conference on Applied Engineering","volume":"23 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Naïve Bayes Classifier for Hand Gestures Recognition\",\"authors\":\"Imanuel Simatupang, D. Pamungkas, S. K. Risandriya\",\"doi\":\"10.5220/0010352601100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper provides recognizing the five gestures of the fingers using Naïve Bayes method. The electromyography signal (EMG) is utilized to recognize the fingers movement. A myo armband is used to obtain the signal. The average success rate of the system is about 90.61%. To verify the results, the outputs of the system are used to control a mobile robot. The results show that the system is able to control the movement of the robot.\",\"PeriodicalId\":103441,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Applied Engineering\",\"volume\":\"23 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Applied Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010352601100114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Applied Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010352601100114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

:本文提供了使用Naïve贝叶斯方法识别手指的五种手势。利用肌电信号(EMG)识别手指运动。一个肌环被用来获取信号。系统的平均成功率约为90.61%。为了验证结果,将系统的输出用于控制移动机器人。实验结果表明,该系统能够控制机器人的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naïve Bayes Classifier for Hand Gestures Recognition
: This paper provides recognizing the five gestures of the fingers using Naïve Bayes method. The electromyography signal (EMG) is utilized to recognize the fingers movement. A myo armband is used to obtain the signal. The average success rate of the system is about 90.61%. To verify the results, the outputs of the system are used to control a mobile robot. The results show that the system is able to control the movement of the robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信