在ErasureBench上占有一席之地:分布式存储系统Erasure编码库的简单评估

Sébastien Vaucher, H. Mercier, V. Schiavoni
{"title":"在ErasureBench上占有一席之地:分布式存储系统Erasure编码库的简单评估","authors":"Sébastien Vaucher, H. Mercier, V. Schiavoni","doi":"10.1109/SRDSW.2016.20","DOIUrl":null,"url":null,"abstract":"We present ErasureBench, an open-source framework to test and benchmark erasure coding implementations for distributed storage systems under realistic conditions. ErasureBench automatically instantiates and scales a cluster of storage nodes, and can seamlessly leverage existing failure traces. As a first example, we use ErasureBench to compare three coding implementations: a (10,4) Reed-Solomon (RS) code, a (10,6,5) locally repairable code (LRC), and a partition of the data source in ten pieces without error-correction. Our experiments show that LRC and RS codes require the same repair throughput when used with small storage nodes, since cluster and network management traffic dominate at this regime. With large storage nodes, read and write traffic increases and our experiments confirm the theoretical and practical tradeoffs between the storage overhead and repair bandwidth of RS and LRC codes.","PeriodicalId":401182,"journal":{"name":"2016 IEEE 35th Symposium on Reliable Distributed Systems Workshops (SRDSW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Have a Seat on the ErasureBench: Easy Evaluation of Erasure Coding Libraries for Distributed Storage Systems\",\"authors\":\"Sébastien Vaucher, H. Mercier, V. Schiavoni\",\"doi\":\"10.1109/SRDSW.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present ErasureBench, an open-source framework to test and benchmark erasure coding implementations for distributed storage systems under realistic conditions. ErasureBench automatically instantiates and scales a cluster of storage nodes, and can seamlessly leverage existing failure traces. As a first example, we use ErasureBench to compare three coding implementations: a (10,4) Reed-Solomon (RS) code, a (10,6,5) locally repairable code (LRC), and a partition of the data source in ten pieces without error-correction. Our experiments show that LRC and RS codes require the same repair throughput when used with small storage nodes, since cluster and network management traffic dominate at this regime. With large storage nodes, read and write traffic increases and our experiments confirm the theoretical and practical tradeoffs between the storage overhead and repair bandwidth of RS and LRC codes.\",\"PeriodicalId\":401182,\"journal\":{\"name\":\"2016 IEEE 35th Symposium on Reliable Distributed Systems Workshops (SRDSW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 35th Symposium on Reliable Distributed Systems Workshops (SRDSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDSW.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 35th Symposium on Reliable Distributed Systems Workshops (SRDSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDSW.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了ErasureBench,这是一个开源框架,用于在现实条件下测试和基准测试分布式存储系统的擦除编码实现。ErasureBench自动实例化和扩展存储节点集群,并可以无缝地利用现有的故障痕迹。作为第一个例子,我们使用ErasureBench来比较三种编码实现:(10,4)Reed-Solomon (RS)代码,(10,6,5)局部可修复代码(LRC),以及将数据源划分为10块且没有纠错。我们的实验表明,当使用小存储节点时,LRC和RS代码需要相同的修复吞吐量,因为集群和网络管理流量在该状态下占主导地位。随着大存储节点的增加,读写流量增加,我们的实验证实了RS和LRC代码的存储开销和修复带宽之间的理论和实践权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Have a Seat on the ErasureBench: Easy Evaluation of Erasure Coding Libraries for Distributed Storage Systems
We present ErasureBench, an open-source framework to test and benchmark erasure coding implementations for distributed storage systems under realistic conditions. ErasureBench automatically instantiates and scales a cluster of storage nodes, and can seamlessly leverage existing failure traces. As a first example, we use ErasureBench to compare three coding implementations: a (10,4) Reed-Solomon (RS) code, a (10,6,5) locally repairable code (LRC), and a partition of the data source in ten pieces without error-correction. Our experiments show that LRC and RS codes require the same repair throughput when used with small storage nodes, since cluster and network management traffic dominate at this regime. With large storage nodes, read and write traffic increases and our experiments confirm the theoretical and practical tradeoffs between the storage overhead and repair bandwidth of RS and LRC codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信