软计算技术在天线工程中的应用与挑战

Anamika Sharma, G. Saini
{"title":"软计算技术在天线工程中的应用与挑战","authors":"Anamika Sharma, G. Saini","doi":"10.1109/ICMETE.2016.69","DOIUrl":null,"url":null,"abstract":"This paper shows the usefulness of soft computing techniques in antenna parameters calculation, design and optimization. Since long time, different soft computing techniques have been drawn attention of researchers, such as Artificial neural network (ANNs), Fuzzy Logic, Radial basis function neural network (RBFNNs) and evolutionary algorithms (EAs). Some popular EAs are Genetic algorithm and its variants, Particle swarm optimization (PSO), Ant Colony, Differential Evolution, Bacterial Foraging Optimization (BFO) and Biogeography Based Optimization (BBO). The main focus in this paper is to review implementation and optimization of different antenna structures through different optimization techniques.","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Computing Techniques Implementation and Challenges in Antenna Engineering\",\"authors\":\"Anamika Sharma, G. Saini\",\"doi\":\"10.1109/ICMETE.2016.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the usefulness of soft computing techniques in antenna parameters calculation, design and optimization. Since long time, different soft computing techniques have been drawn attention of researchers, such as Artificial neural network (ANNs), Fuzzy Logic, Radial basis function neural network (RBFNNs) and evolutionary algorithms (EAs). Some popular EAs are Genetic algorithm and its variants, Particle swarm optimization (PSO), Ant Colony, Differential Evolution, Bacterial Foraging Optimization (BFO) and Biogeography Based Optimization (BBO). The main focus in this paper is to review implementation and optimization of different antenna structures through different optimization techniques.\",\"PeriodicalId\":167368,\"journal\":{\"name\":\"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMETE.2016.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了软计算技术在天线参数计算、设计和优化中的应用。长期以来,各种软计算技术一直受到研究者的关注,如人工神经网络(ann)、模糊逻辑、径向基函数神经网络(RBFNNs)和进化算法(EAs)等。目前流行的遗传算法有:遗传算法及其变体、粒子群算法、蚁群算法、差分进化算法、细菌觅食优化算法和基于生物地理的优化算法。本文的主要重点是通过不同的优化技术来回顾不同天线结构的实现和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Computing Techniques Implementation and Challenges in Antenna Engineering
This paper shows the usefulness of soft computing techniques in antenna parameters calculation, design and optimization. Since long time, different soft computing techniques have been drawn attention of researchers, such as Artificial neural network (ANNs), Fuzzy Logic, Radial basis function neural network (RBFNNs) and evolutionary algorithms (EAs). Some popular EAs are Genetic algorithm and its variants, Particle swarm optimization (PSO), Ant Colony, Differential Evolution, Bacterial Foraging Optimization (BFO) and Biogeography Based Optimization (BBO). The main focus in this paper is to review implementation and optimization of different antenna structures through different optimization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信