基于AR(1)源的简单分类器的可解释性

Cem Benar, A. Akansu
{"title":"基于AR(1)源的简单分类器的可解释性","authors":"Cem Benar, A. Akansu","doi":"10.1109/CISS53076.2022.9751181","DOIUrl":null,"url":null,"abstract":"The heuristic reasoning and experiments based design approach have been the pillars of studies on artificial neural networks. The explainable network performance is required for most applications. We focus on a simple classifier network for the two-class case of AR(1) data sources. We trace the input statistics through the network and quantify changes to explain relationship between accuracy performance, optimized parameters and activation function types employed for the given architecture. We present test accuracy results for various network configurations with different dimension and activation types. AR(1) source model for a two-class case is utilized to generate training and test data sets of the experiments due to its ease of use for analytical study. We quantify the relationships with well known metrics among signal (class) statistics, network architecture, activation function type and accuracy for several correlation coefficient pairs of the two AR(1) sources utilized in this paper. It is observed from the experiments that the analyses of data, input-output relationships of hidden and output layer nodes for the given architecture provide invaluable insights and guidance to judiciously design a neural network and to explain its performance based on characteristics of the building blocks.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Explainability of A Simple Classifier for AR(1) Source\",\"authors\":\"Cem Benar, A. Akansu\",\"doi\":\"10.1109/CISS53076.2022.9751181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heuristic reasoning and experiments based design approach have been the pillars of studies on artificial neural networks. The explainable network performance is required for most applications. We focus on a simple classifier network for the two-class case of AR(1) data sources. We trace the input statistics through the network and quantify changes to explain relationship between accuracy performance, optimized parameters and activation function types employed for the given architecture. We present test accuracy results for various network configurations with different dimension and activation types. AR(1) source model for a two-class case is utilized to generate training and test data sets of the experiments due to its ease of use for analytical study. We quantify the relationships with well known metrics among signal (class) statistics, network architecture, activation function type and accuracy for several correlation coefficient pairs of the two AR(1) sources utilized in this paper. It is observed from the experiments that the analyses of data, input-output relationships of hidden and output layer nodes for the given architecture provide invaluable insights and guidance to judiciously design a neural network and to explain its performance based on characteristics of the building blocks.\",\"PeriodicalId\":305918,\"journal\":{\"name\":\"2022 56th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 56th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS53076.2022.9751181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

启发式推理和基于实验的设计方法一直是人工神经网络研究的支柱。大多数应用程序都需要可解释的网络性能。我们专注于一个简单的分类器网络,用于AR(1)数据源的两类情况。我们通过网络跟踪输入统计数据,并量化变化,以解释给定架构中使用的精度性能、优化参数和激活函数类型之间的关系。我们给出了不同维度和激活类型的各种网络配置的测试精度结果。利用两类案例的AR(1)源模型生成实验的训练和测试数据集,便于分析研究。我们量化了本文中使用的两个AR(1)源的几个相关系数对的信号(类)统计、网络结构、激活函数类型和精度之间与已知指标的关系。从实验中可以观察到,对给定体系结构的数据、隐藏层节点和输出层节点的输入输出关系的分析,为明智地设计神经网络以及根据构建块的特征解释其性能提供了宝贵的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Explainability of A Simple Classifier for AR(1) Source
The heuristic reasoning and experiments based design approach have been the pillars of studies on artificial neural networks. The explainable network performance is required for most applications. We focus on a simple classifier network for the two-class case of AR(1) data sources. We trace the input statistics through the network and quantify changes to explain relationship between accuracy performance, optimized parameters and activation function types employed for the given architecture. We present test accuracy results for various network configurations with different dimension and activation types. AR(1) source model for a two-class case is utilized to generate training and test data sets of the experiments due to its ease of use for analytical study. We quantify the relationships with well known metrics among signal (class) statistics, network architecture, activation function type and accuracy for several correlation coefficient pairs of the two AR(1) sources utilized in this paper. It is observed from the experiments that the analyses of data, input-output relationships of hidden and output layer nodes for the given architecture provide invaluable insights and guidance to judiciously design a neural network and to explain its performance based on characteristics of the building blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信