面向非对称最优源分离对比

E. Moreau
{"title":"面向非对称最优源分离对比","authors":"E. Moreau","doi":"10.1109/HOST.1997.613549","DOIUrl":null,"url":null,"abstract":"We consider the problem of sources separation and particularly criteria based approaches. A generalized definition of contrast function is given in order to consider non symmetrical and/or non scale invariant functions. Two generalized contrasts involving high-order cumulants are proposed. In the case of two sources, we derive the optimal non symmetrical coefficient by minimizing a performance index. Finally computer simulations are presented in order to illustrate the results and to show the interest in considering a non symmetrical contrast.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards non symmetrical optimal source separation contrasts\",\"authors\":\"E. Moreau\",\"doi\":\"10.1109/HOST.1997.613549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of sources separation and particularly criteria based approaches. A generalized definition of contrast function is given in order to consider non symmetrical and/or non scale invariant functions. Two generalized contrasts involving high-order cumulants are proposed. In the case of two sources, we derive the optimal non symmetrical coefficient by minimizing a performance index. Finally computer simulations are presented in order to illustrate the results and to show the interest in considering a non symmetrical contrast.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑源分离问题,特别是基于标准的方法。为了考虑非对称和/或非尺度不变函数,给出了对比函数的广义定义。提出了两种涉及高阶累积量的广义对比。在两个源的情况下,我们通过最小化性能指标推导出最优非对称系数。最后给出了计算机模拟,以说明结果并显示考虑非对称对比度的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards non symmetrical optimal source separation contrasts
We consider the problem of sources separation and particularly criteria based approaches. A generalized definition of contrast function is given in order to consider non symmetrical and/or non scale invariant functions. Two generalized contrasts involving high-order cumulants are proposed. In the case of two sources, we derive the optimal non symmetrical coefficient by minimizing a performance index. Finally computer simulations are presented in order to illustrate the results and to show the interest in considering a non symmetrical contrast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信