海岛电力系统太阳能光伏电站容量信用评估

Sewtohul Ghirendra Gossagne, Oree Vishwamitra
{"title":"海岛电力系统太阳能光伏电站容量信用评估","authors":"Sewtohul Ghirendra Gossagne, Oree Vishwamitra","doi":"10.1109/APPEEC.2017.8308939","DOIUrl":null,"url":null,"abstract":"Mauritius is targeting to significantly increase its electricity generation capacity through solar photovoltaic technologies in the future. The uncontrollable and unpredictable nature of the power output from these technologies could lead to power system reliability issues. In this context, the capacity credit of an operational 15 MW solar photovoltaic farm is evaluated using a Hierarchical Level 1 analysis based on effective load carrying capability. The loss of load expectation for the power system is found to be 0.145 hours/year while the capacity credit of the solar photovoltaic farm is 23.9%. These results indicate that the generation capacity of power system is adequate to supply consumers with minimum risk of energy shortage. Moreover, the high value of the capacity credit is due to the very low penetration rate of intermittent renewable energy in the grid. Further simulations show that the capacity credit will decrease below 10% if penetration rates reach 20%.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing capacity credit of a solar photovoltaic farm in an island power system\",\"authors\":\"Sewtohul Ghirendra Gossagne, Oree Vishwamitra\",\"doi\":\"10.1109/APPEEC.2017.8308939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mauritius is targeting to significantly increase its electricity generation capacity through solar photovoltaic technologies in the future. The uncontrollable and unpredictable nature of the power output from these technologies could lead to power system reliability issues. In this context, the capacity credit of an operational 15 MW solar photovoltaic farm is evaluated using a Hierarchical Level 1 analysis based on effective load carrying capability. The loss of load expectation for the power system is found to be 0.145 hours/year while the capacity credit of the solar photovoltaic farm is 23.9%. These results indicate that the generation capacity of power system is adequate to supply consumers with minimum risk of energy shortage. Moreover, the high value of the capacity credit is due to the very low penetration rate of intermittent renewable energy in the grid. Further simulations show that the capacity credit will decrease below 10% if penetration rates reach 20%.\",\"PeriodicalId\":247669,\"journal\":{\"name\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2017.8308939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

毛里求斯的目标是在未来通过太阳能光伏技术大幅提高其发电能力。这些技术输出功率的不可控和不可预测特性可能导致电力系统可靠性问题。在这种情况下,使用基于有效承载能力的分层1级分析来评估运行中的15mw太阳能光伏农场的容量信用。电力系统的负荷预期损失为0.145小时/年,而太阳能光伏电站的容量信用为23.9%。这些结果表明,电力系统的发电能力足以为用户提供最小的能源短缺风险。此外,容量信贷的高价值是由于间歇性可再生能源在电网中的渗透率非常低。进一步的模拟表明,当渗透率达到20%时,产能信贷将下降到10%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing capacity credit of a solar photovoltaic farm in an island power system
Mauritius is targeting to significantly increase its electricity generation capacity through solar photovoltaic technologies in the future. The uncontrollable and unpredictable nature of the power output from these technologies could lead to power system reliability issues. In this context, the capacity credit of an operational 15 MW solar photovoltaic farm is evaluated using a Hierarchical Level 1 analysis based on effective load carrying capability. The loss of load expectation for the power system is found to be 0.145 hours/year while the capacity credit of the solar photovoltaic farm is 23.9%. These results indicate that the generation capacity of power system is adequate to supply consumers with minimum risk of energy shortage. Moreover, the high value of the capacity credit is due to the very low penetration rate of intermittent renewable energy in the grid. Further simulations show that the capacity credit will decrease below 10% if penetration rates reach 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信