G. Biczók, Balázs Sonkoly, Nikolett Bereczky, C. Boyd
{"title":"用于协作多运营商服务交付的私有VNFs:一个架构案例","authors":"G. Biczók, Balázs Sonkoly, Nikolett Bereczky, C. Boyd","doi":"10.1109/NOMS.2016.7502996","DOIUrl":null,"url":null,"abstract":"Flexible service delivery is a key requirement for 5G network architectures. This includes the support for collaborative service delivery by multiple operators, when an individual operator lacks the geographical footprint or the available network, compute or storage resources to provide the requested service to its customer. Network Function Virtualisation is a key enabler of such service delivery, as network functions (VNFs) can be outsourced to other operators. Owing to the (partial lack of) contractual relationships and co-opetition in the ecosystem, the privacy of user data, operator policy and even VNF code could be compromised. In this paper, we present a case for privacy in a VNF-enabled collaborative service delivery architecture. Specifically, we show the promise of homomorphic encryption (HE) in this context and its performance limitations through a proof of concept implementation of an image transcoder network function. Furthermore, inspired by application-specific encryption techniques, we propose a way forward for private, payload-intensive VNFs.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Private VNFs for collaborative multi-operator service delivery: An architectural case\",\"authors\":\"G. Biczók, Balázs Sonkoly, Nikolett Bereczky, C. Boyd\",\"doi\":\"10.1109/NOMS.2016.7502996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible service delivery is a key requirement for 5G network architectures. This includes the support for collaborative service delivery by multiple operators, when an individual operator lacks the geographical footprint or the available network, compute or storage resources to provide the requested service to its customer. Network Function Virtualisation is a key enabler of such service delivery, as network functions (VNFs) can be outsourced to other operators. Owing to the (partial lack of) contractual relationships and co-opetition in the ecosystem, the privacy of user data, operator policy and even VNF code could be compromised. In this paper, we present a case for privacy in a VNF-enabled collaborative service delivery architecture. Specifically, we show the promise of homomorphic encryption (HE) in this context and its performance limitations through a proof of concept implementation of an image transcoder network function. Furthermore, inspired by application-specific encryption techniques, we propose a way forward for private, payload-intensive VNFs.\",\"PeriodicalId\":344879,\"journal\":{\"name\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2016.7502996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Private VNFs for collaborative multi-operator service delivery: An architectural case
Flexible service delivery is a key requirement for 5G network architectures. This includes the support for collaborative service delivery by multiple operators, when an individual operator lacks the geographical footprint or the available network, compute or storage resources to provide the requested service to its customer. Network Function Virtualisation is a key enabler of such service delivery, as network functions (VNFs) can be outsourced to other operators. Owing to the (partial lack of) contractual relationships and co-opetition in the ecosystem, the privacy of user data, operator policy and even VNF code could be compromised. In this paper, we present a case for privacy in a VNF-enabled collaborative service delivery architecture. Specifically, we show the promise of homomorphic encryption (HE) in this context and its performance limitations through a proof of concept implementation of an image transcoder network function. Furthermore, inspired by application-specific encryption techniques, we propose a way forward for private, payload-intensive VNFs.