{"title":"完全成熟的IV型分数阶离散傅里叶变换与简单的分数阶离散傅里叶变换","authors":"M. Hanna","doi":"10.1109/MWSCAS.2012.6292220","DOIUrl":null,"url":null,"abstract":"The fractional discrete Fourier transform of type IV (FDFT-IV) is a generalization of the discrete Fourier transform of type IV (DFT-IV). The paper presents a fully-fledged definition for the FDFT-IV which necessitates the availability of orthonormal eigenvectors of the DFT-IV matrix G. This definition is shown to outperform the simple definition which is just a linear combination of the signal, its DFT-IV and their flipped versions.","PeriodicalId":324891,"journal":{"name":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully fledged versus simple fractional discrete Fourier transform of type IV\",\"authors\":\"M. Hanna\",\"doi\":\"10.1109/MWSCAS.2012.6292220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fractional discrete Fourier transform of type IV (FDFT-IV) is a generalization of the discrete Fourier transform of type IV (DFT-IV). The paper presents a fully-fledged definition for the FDFT-IV which necessitates the availability of orthonormal eigenvectors of the DFT-IV matrix G. This definition is shown to outperform the simple definition which is just a linear combination of the signal, its DFT-IV and their flipped versions.\",\"PeriodicalId\":324891,\"journal\":{\"name\":\"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2012.6292220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2012.6292220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully fledged versus simple fractional discrete Fourier transform of type IV
The fractional discrete Fourier transform of type IV (FDFT-IV) is a generalization of the discrete Fourier transform of type IV (DFT-IV). The paper presents a fully-fledged definition for the FDFT-IV which necessitates the availability of orthonormal eigenvectors of the DFT-IV matrix G. This definition is shown to outperform the simple definition which is just a linear combination of the signal, its DFT-IV and their flipped versions.