{"title":"双向中继非正交多址系统的可达速率分析","authors":"O. Ozdemir","doi":"10.1109/APWiMob51111.2021.9435207","DOIUrl":null,"url":null,"abstract":"This paper investigates the performance of a non-orthogonal multiple access (NOMA) based two-way relaying system where the users want to exchange independent messages with the help of a decode-and-forward relay. We consider transmission over three phases where the first and second phases are allocated to the transmissions of the users and after detection the relay applies superposition coding and transmits the network encoded symbol to the users in the third phase. Exact analytical expressions are derived to characterize the achievable average rate of the system over independent Rayleigh fading channels. Computer simulations are also presented to confirm the theoretical analysis. Analytical and simulation results show that the proposed three-phase two-way relaying scheme with NOMA outperforms the two-phase and four-phase NOMA-based two-way relaying scenarios in terms of achievable average rate.","PeriodicalId":325270,"journal":{"name":"2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)","volume":"os-56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Achievable Rate Analysis for Two-Way Relay Non-Orthogonal Multiple Access Systems\",\"authors\":\"O. Ozdemir\",\"doi\":\"10.1109/APWiMob51111.2021.9435207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the performance of a non-orthogonal multiple access (NOMA) based two-way relaying system where the users want to exchange independent messages with the help of a decode-and-forward relay. We consider transmission over three phases where the first and second phases are allocated to the transmissions of the users and after detection the relay applies superposition coding and transmits the network encoded symbol to the users in the third phase. Exact analytical expressions are derived to characterize the achievable average rate of the system over independent Rayleigh fading channels. Computer simulations are also presented to confirm the theoretical analysis. Analytical and simulation results show that the proposed three-phase two-way relaying scheme with NOMA outperforms the two-phase and four-phase NOMA-based two-way relaying scenarios in terms of achievable average rate.\",\"PeriodicalId\":325270,\"journal\":{\"name\":\"2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)\",\"volume\":\"os-56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWiMob51111.2021.9435207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWiMob51111.2021.9435207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achievable Rate Analysis for Two-Way Relay Non-Orthogonal Multiple Access Systems
This paper investigates the performance of a non-orthogonal multiple access (NOMA) based two-way relaying system where the users want to exchange independent messages with the help of a decode-and-forward relay. We consider transmission over three phases where the first and second phases are allocated to the transmissions of the users and after detection the relay applies superposition coding and transmits the network encoded symbol to the users in the third phase. Exact analytical expressions are derived to characterize the achievable average rate of the system over independent Rayleigh fading channels. Computer simulations are also presented to confirm the theoretical analysis. Analytical and simulation results show that the proposed three-phase two-way relaying scheme with NOMA outperforms the two-phase and four-phase NOMA-based two-way relaying scenarios in terms of achievable average rate.