Federico Rondelli, A. D. Salvo, Gioacchino Calandra Sebastianella, M. Murgia, L. Fadiga, F. Biscarini, M. D. Lauro
{"title":"突触前直流偏压控制三端神经形态电解质门控有机晶体管的可塑性和动力学","authors":"Federico Rondelli, A. D. Salvo, Gioacchino Calandra Sebastianella, M. Murgia, L. Fadiga, F. Biscarini, M. D. Lauro","doi":"10.1088/2634-4386/acb37f","DOIUrl":null,"url":null,"abstract":"The role of pre-synaptic DC bias is investigated in three-terminal organic neuromorphic architectures based on electrolyte-gated organic transistors—EGOTs. By means of pre-synaptic offset it is possible to finely control the number of discrete conductance states in short-term plasticity experiments, to obtain, at will, both depressive and facilitating response in the same neuromorphic device and to set the ratio between two subsequent pulses in paired-pulse experiments. The charge dynamics leading to these important features are discussed in relationship with macroscopic device figures of merit such as conductivity and transconductance, establishing a novel key enabling parameter in devising the operation of neuromorphic organic electronics.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pre-synaptic DC bias controls the plasticity and dynamics of three-terminal neuromorphic electrolyte-gated organic transistors\",\"authors\":\"Federico Rondelli, A. D. Salvo, Gioacchino Calandra Sebastianella, M. Murgia, L. Fadiga, F. Biscarini, M. D. Lauro\",\"doi\":\"10.1088/2634-4386/acb37f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of pre-synaptic DC bias is investigated in three-terminal organic neuromorphic architectures based on electrolyte-gated organic transistors—EGOTs. By means of pre-synaptic offset it is possible to finely control the number of discrete conductance states in short-term plasticity experiments, to obtain, at will, both depressive and facilitating response in the same neuromorphic device and to set the ratio between two subsequent pulses in paired-pulse experiments. The charge dynamics leading to these important features are discussed in relationship with macroscopic device figures of merit such as conductivity and transconductance, establishing a novel key enabling parameter in devising the operation of neuromorphic organic electronics.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/acb37f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/acb37f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pre-synaptic DC bias controls the plasticity and dynamics of three-terminal neuromorphic electrolyte-gated organic transistors
The role of pre-synaptic DC bias is investigated in three-terminal organic neuromorphic architectures based on electrolyte-gated organic transistors—EGOTs. By means of pre-synaptic offset it is possible to finely control the number of discrete conductance states in short-term plasticity experiments, to obtain, at will, both depressive and facilitating response in the same neuromorphic device and to set the ratio between two subsequent pulses in paired-pulse experiments. The charge dynamics leading to these important features are discussed in relationship with macroscopic device figures of merit such as conductivity and transconductance, establishing a novel key enabling parameter in devising the operation of neuromorphic organic electronics.