{"title":"使用粗粒度并行遗传算法聚类:初步研究","authors":"N. Ratha, Ameet K. Jain, M. Chung","doi":"10.1109/CAMP.1995.521057","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GA) are useful in solving complex optimization problems. By posing pattern clustering as an optimization problem, GAs can be used to obtain optimal minimum squared error partitions. In order to improve the total execution time, a distributed algorithm has been developed using the divide and conquer approach. Using a standard communication library called PVM, the distributed algorithm has been implemented on a workstation cluster: the GA approach gives better quality clusters for many data sets compared to a standard K-means clustering algorithm. We have achieved a near linear speedup for the distributed implementation.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Clustering using a coarse-grained parallel genetic algorithm: a preliminary study\",\"authors\":\"N. Ratha, Ameet K. Jain, M. Chung\",\"doi\":\"10.1109/CAMP.1995.521057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithms (GA) are useful in solving complex optimization problems. By posing pattern clustering as an optimization problem, GAs can be used to obtain optimal minimum squared error partitions. In order to improve the total execution time, a distributed algorithm has been developed using the divide and conquer approach. Using a standard communication library called PVM, the distributed algorithm has been implemented on a workstation cluster: the GA approach gives better quality clusters for many data sets compared to a standard K-means clustering algorithm. We have achieved a near linear speedup for the distributed implementation.\",\"PeriodicalId\":277209,\"journal\":{\"name\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMP.1995.521057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustering using a coarse-grained parallel genetic algorithm: a preliminary study
Genetic algorithms (GA) are useful in solving complex optimization problems. By posing pattern clustering as an optimization problem, GAs can be used to obtain optimal minimum squared error partitions. In order to improve the total execution time, a distributed algorithm has been developed using the divide and conquer approach. Using a standard communication library called PVM, the distributed algorithm has been implemented on a workstation cluster: the GA approach gives better quality clusters for many data sets compared to a standard K-means clustering algorithm. We have achieved a near linear speedup for the distributed implementation.