使用粗粒度并行遗传算法聚类:初步研究

N. Ratha, Ameet K. Jain, M. Chung
{"title":"使用粗粒度并行遗传算法聚类:初步研究","authors":"N. Ratha, Ameet K. Jain, M. Chung","doi":"10.1109/CAMP.1995.521057","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GA) are useful in solving complex optimization problems. By posing pattern clustering as an optimization problem, GAs can be used to obtain optimal minimum squared error partitions. In order to improve the total execution time, a distributed algorithm has been developed using the divide and conquer approach. Using a standard communication library called PVM, the distributed algorithm has been implemented on a workstation cluster: the GA approach gives better quality clusters for many data sets compared to a standard K-means clustering algorithm. We have achieved a near linear speedup for the distributed implementation.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Clustering using a coarse-grained parallel genetic algorithm: a preliminary study\",\"authors\":\"N. Ratha, Ameet K. Jain, M. Chung\",\"doi\":\"10.1109/CAMP.1995.521057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithms (GA) are useful in solving complex optimization problems. By posing pattern clustering as an optimization problem, GAs can be used to obtain optimal minimum squared error partitions. In order to improve the total execution time, a distributed algorithm has been developed using the divide and conquer approach. Using a standard communication library called PVM, the distributed algorithm has been implemented on a workstation cluster: the GA approach gives better quality clusters for many data sets compared to a standard K-means clustering algorithm. We have achieved a near linear speedup for the distributed implementation.\",\"PeriodicalId\":277209,\"journal\":{\"name\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMP.1995.521057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

遗传算法在解决复杂的优化问题中非常有用。通过将模式聚类作为一个优化问题,GAs可以获得最优的最小平方误差分区。为了提高总执行时间,采用分而治之的方法开发了一种分布式算法。使用称为PVM的标准通信库,分布式算法已经在工作站集群上实现:与标准K-means聚类算法相比,GA方法为许多数据集提供了更好的质量聚类。我们已经实现了分布式实现的近线性加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering using a coarse-grained parallel genetic algorithm: a preliminary study
Genetic algorithms (GA) are useful in solving complex optimization problems. By posing pattern clustering as an optimization problem, GAs can be used to obtain optimal minimum squared error partitions. In order to improve the total execution time, a distributed algorithm has been developed using the divide and conquer approach. Using a standard communication library called PVM, the distributed algorithm has been implemented on a workstation cluster: the GA approach gives better quality clusters for many data sets compared to a standard K-means clustering algorithm. We have achieved a near linear speedup for the distributed implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信