{"title":"采用CMOS智能六边形图像传感器进行低电平分割","authors":"M. Tremblay, S. Dallaire, D. Poussart","doi":"10.1109/CAMP.1995.521015","DOIUrl":null,"url":null,"abstract":"The exploitation of analog VLSI techniques combined with computer vision knowledge offers spectacular possibilities. Limitations of current VLSI technologies do not allow to create sensors with extremely complex pixel architecture, but the coupling of external CMOS analog processing units is a great solution for rapid low level segmentation processes. This paper presents a novel sensing approach where photo-transduction, multiresolution feature extraction, scale-space integration, and edge tracking combined with sub-pixel interpolation are performed on a mixed-signal (digital-analog) VLSI architecture. The paper also discusses how we implement the curvature primal sketch into the system for higher level scene representation. The main sensory part of this integrated image acquisition system is a CMOS sensor called Multiport Access photo-Receptor (MAR). VLSI also provides means to integrate analog computing, digital controller, and DSP co-processor modules which define a powerful sensory chip set for focal plane image processing. A current version of the MAR sensor which implements 256/spl times/256 pixels includes 16 analog spatial filters which simultaneously compute multiresolution edge maps. This novel smart image sensor approach with associated low level segmentation capability presents good opportunities for real time automated process for the particular case of unstructured environment.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Low level segmentation using CMOS smart hexagonal image sensor\",\"authors\":\"M. Tremblay, S. Dallaire, D. Poussart\",\"doi\":\"10.1109/CAMP.1995.521015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploitation of analog VLSI techniques combined with computer vision knowledge offers spectacular possibilities. Limitations of current VLSI technologies do not allow to create sensors with extremely complex pixel architecture, but the coupling of external CMOS analog processing units is a great solution for rapid low level segmentation processes. This paper presents a novel sensing approach where photo-transduction, multiresolution feature extraction, scale-space integration, and edge tracking combined with sub-pixel interpolation are performed on a mixed-signal (digital-analog) VLSI architecture. The paper also discusses how we implement the curvature primal sketch into the system for higher level scene representation. The main sensory part of this integrated image acquisition system is a CMOS sensor called Multiport Access photo-Receptor (MAR). VLSI also provides means to integrate analog computing, digital controller, and DSP co-processor modules which define a powerful sensory chip set for focal plane image processing. A current version of the MAR sensor which implements 256/spl times/256 pixels includes 16 analog spatial filters which simultaneously compute multiresolution edge maps. This novel smart image sensor approach with associated low level segmentation capability presents good opportunities for real time automated process for the particular case of unstructured environment.\",\"PeriodicalId\":277209,\"journal\":{\"name\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Conference on Computer Architectures for Machine Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMP.1995.521015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low level segmentation using CMOS smart hexagonal image sensor
The exploitation of analog VLSI techniques combined with computer vision knowledge offers spectacular possibilities. Limitations of current VLSI technologies do not allow to create sensors with extremely complex pixel architecture, but the coupling of external CMOS analog processing units is a great solution for rapid low level segmentation processes. This paper presents a novel sensing approach where photo-transduction, multiresolution feature extraction, scale-space integration, and edge tracking combined with sub-pixel interpolation are performed on a mixed-signal (digital-analog) VLSI architecture. The paper also discusses how we implement the curvature primal sketch into the system for higher level scene representation. The main sensory part of this integrated image acquisition system is a CMOS sensor called Multiport Access photo-Receptor (MAR). VLSI also provides means to integrate analog computing, digital controller, and DSP co-processor modules which define a powerful sensory chip set for focal plane image processing. A current version of the MAR sensor which implements 256/spl times/256 pixels includes 16 analog spatial filters which simultaneously compute multiresolution edge maps. This novel smart image sensor approach with associated low level segmentation capability presents good opportunities for real time automated process for the particular case of unstructured environment.