基于ransac的自然语音情感识别训练数据选择

AFFINE '10 Pub Date : 2010-10-29 DOI:10.1145/1877826.1877831
L. Erdem, Çiğdem Eroğlu, E. Bozkurt, E. Erzin
{"title":"基于ransac的自然语音情感识别训练数据选择","authors":"L. Erdem, Çiğdem Eroğlu, E. Bozkurt, E. Erzin","doi":"10.1145/1877826.1877831","DOIUrl":null,"url":null,"abstract":"Training datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. . This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar's test.","PeriodicalId":433717,"journal":{"name":"AFFINE '10","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"RANSAC-based training data selection for emotion recognition from spontaneous speech\",\"authors\":\"L. Erdem, Çiğdem Eroğlu, E. Bozkurt, E. Erzin\",\"doi\":\"10.1145/1877826.1877831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. . This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar's test.\",\"PeriodicalId\":433717,\"journal\":{\"name\":\"AFFINE '10\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AFFINE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1877826.1877831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFFINE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877826.1877831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

包含自发情绪表达的训练数据集往往是不完美的,因为人类观察者对这些数据进行标记的模糊性和困难。在本文中,我们提出了一种基于随机抽样共识(RANSAC)的训练方法,用于从自发语音记录中识别情感问题。我们的动机是在隐马尔可夫模型(hmm)的训练阶段插入一个数据清理过程,目的是去除训练数据集中可能存在的一些可疑的标签实例。我们使用具有不同状态数和每个状态的高斯混合的hmm进行的实验表明,在训练阶段使用RANSAC可以提高测试集的未加权召回率,最高可达2.84%。使用McNemar的测试,这种分类器准确性的提高在统计上显着。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RANSAC-based training data selection for emotion recognition from spontaneous speech
Training datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. . This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar's test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信