一种发现频繁项集的半先验算法

S. Fageeri, R. Ahmad, B. Baharudin
{"title":"一种发现频繁项集的半先验算法","authors":"S. Fageeri, R. Ahmad, B. Baharudin","doi":"10.1109/ICCOINS.2014.6868358","DOIUrl":null,"url":null,"abstract":"Mining the frequent itemsets are still one of the data mining research challenges. Frequent itemsets generation produce extremely large numbers of generated itemsets that make the algorithms inefficient. The reason is that the most traditional approaches adopt an iterative strategy to discover the itemsets, that's require very large process. Furthermore, the present mining algorithms cannot perform efficiently due to high and repeatedly database scan. In this paper we introduce a new binary-based Semi-Apriori technique that efficiently discovers the frequent itemsets. Extensive experiments had been carried out using the new technique, compared to the existing Apriori algorithms, a tentative result reveal that our technique outperforms Apriori algorithm in terms of execution time.","PeriodicalId":368100,"journal":{"name":"2014 International Conference on Computer and Information Sciences (ICCOINS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A semi-apriori algorithm for discovering the frequent itemsets\",\"authors\":\"S. Fageeri, R. Ahmad, B. Baharudin\",\"doi\":\"10.1109/ICCOINS.2014.6868358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining the frequent itemsets are still one of the data mining research challenges. Frequent itemsets generation produce extremely large numbers of generated itemsets that make the algorithms inefficient. The reason is that the most traditional approaches adopt an iterative strategy to discover the itemsets, that's require very large process. Furthermore, the present mining algorithms cannot perform efficiently due to high and repeatedly database scan. In this paper we introduce a new binary-based Semi-Apriori technique that efficiently discovers the frequent itemsets. Extensive experiments had been carried out using the new technique, compared to the existing Apriori algorithms, a tentative result reveal that our technique outperforms Apriori algorithm in terms of execution time.\",\"PeriodicalId\":368100,\"journal\":{\"name\":\"2014 International Conference on Computer and Information Sciences (ICCOINS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computer and Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS.2014.6868358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2014.6868358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

频繁项集的挖掘仍然是数据挖掘研究的挑战之一。频繁的生成项目集会产生大量的生成项目集,使得算法效率低下。原因是大多数传统方法采用迭代策略来发现项目集,这需要非常大的过程。此外,现有的挖掘算法由于对数据库的高扫描和重复扫描而无法有效地执行。本文介绍了一种新的基于二进制的半apriori技术,该技术可以有效地发现频繁项集。使用新技术进行了大量的实验,与现有的Apriori算法进行了比较,初步结果表明,我们的技术在执行时间方面优于Apriori算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi-apriori algorithm for discovering the frequent itemsets
Mining the frequent itemsets are still one of the data mining research challenges. Frequent itemsets generation produce extremely large numbers of generated itemsets that make the algorithms inefficient. The reason is that the most traditional approaches adopt an iterative strategy to discover the itemsets, that's require very large process. Furthermore, the present mining algorithms cannot perform efficiently due to high and repeatedly database scan. In this paper we introduce a new binary-based Semi-Apriori technique that efficiently discovers the frequent itemsets. Extensive experiments had been carried out using the new technique, compared to the existing Apriori algorithms, a tentative result reveal that our technique outperforms Apriori algorithm in terms of execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信