一种新的动态多目标优化进化算法

Bojin Zheng
{"title":"一种新的动态多目标优化进化算法","authors":"Bojin Zheng","doi":"10.1109/ICNC.2007.91","DOIUrl":null,"url":null,"abstract":"Dynamic multi-objective optimization problems are very common in real-world applications. The researches on applying evolutionary algorithm into such problems are attracting more and more researchers. In this paper, a new dynamic multi-objective optimization evolutionary algorithm which utilizes hyper-mutation operator to deal with dynamics and geometrical Pareto selection to deal with multi-objective is introduced. The experimental results show that the performance is satisfactory.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"A New Dynamic Multi-objective Optimization Evolutionary Algorithm\",\"authors\":\"Bojin Zheng\",\"doi\":\"10.1109/ICNC.2007.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic multi-objective optimization problems are very common in real-world applications. The researches on applying evolutionary algorithm into such problems are attracting more and more researchers. In this paper, a new dynamic multi-objective optimization evolutionary algorithm which utilizes hyper-mutation operator to deal with dynamics and geometrical Pareto selection to deal with multi-objective is introduced. The experimental results show that the performance is satisfactory.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

动态多目标优化问题在实际应用中非常常见。将进化算法应用于此类问题的研究吸引了越来越多的研究者。本文介绍了一种新的动态多目标优化进化算法,该算法利用超突变算子处理动态问题,利用几何Pareto选择处理多目标问题。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Dynamic Multi-objective Optimization Evolutionary Algorithm
Dynamic multi-objective optimization problems are very common in real-world applications. The researches on applying evolutionary algorithm into such problems are attracting more and more researchers. In this paper, a new dynamic multi-objective optimization evolutionary algorithm which utilizes hyper-mutation operator to deal with dynamics and geometrical Pareto selection to deal with multi-objective is introduced. The experimental results show that the performance is satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信