金刚石纳米流体的微观结构和热特性

F. Mashali, Ethan Languri, G. Mirshekari, J. Davidson, D. Kerns
{"title":"金刚石纳米流体的微观结构和热特性","authors":"F. Mashali, Ethan Languri, G. Mirshekari, J. Davidson, D. Kerns","doi":"10.1115/IMECE2018-87496","DOIUrl":null,"url":null,"abstract":"Conventional heat transfer fluids such as water, ethylene glycol, and mineral oil, that are used widely in industry suffer from low thermal conductivity. On the other hand, diamond has shown exceptional thermal properties with a thermal conductivity higher than five times of copper and about zero electrical conductivity. To investigate the effectiveness of nanodiamond particles in traditional heat transfer fluids, we study deaggregated ultra-dispersed diamonds (UDD) using X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Furthermore, nanodiamond nanofluids were prepared at different concentrations in deionized (DI) water as the base fluid. Particle size distribution was investigated using TEM and the average particle size have been reported around 6 nm. The thermal conductivity of nanofluids was measured at different concentrations and temperatures. The results indicate up to 15% enhancement in thermal conductivity compared with the base fluid and thermal conductivity increases with temperature and particle loading. The viscosity raise in the samples have been negligible.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microstructural and Thermal Characterization of Diamond Nanofluids\",\"authors\":\"F. Mashali, Ethan Languri, G. Mirshekari, J. Davidson, D. Kerns\",\"doi\":\"10.1115/IMECE2018-87496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional heat transfer fluids such as water, ethylene glycol, and mineral oil, that are used widely in industry suffer from low thermal conductivity. On the other hand, diamond has shown exceptional thermal properties with a thermal conductivity higher than five times of copper and about zero electrical conductivity. To investigate the effectiveness of nanodiamond particles in traditional heat transfer fluids, we study deaggregated ultra-dispersed diamonds (UDD) using X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Furthermore, nanodiamond nanofluids were prepared at different concentrations in deionized (DI) water as the base fluid. Particle size distribution was investigated using TEM and the average particle size have been reported around 6 nm. The thermal conductivity of nanofluids was measured at different concentrations and temperatures. The results indicate up to 15% enhancement in thermal conductivity compared with the base fluid and thermal conductivity increases with temperature and particle loading. The viscosity raise in the samples have been negligible.\",\"PeriodicalId\":307820,\"journal\":{\"name\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Heat Transfer and Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的传热流体,如水、乙二醇和矿物油,在工业中广泛使用,其导热系数低。另一方面,金刚石表现出特殊的热性能,其导热系数高于铜的五倍,导电性约为零。为了研究纳米金刚石颗粒在传统传热流体中的有效性,我们利用x射线衍射分析(XRD)和透射电子显微镜(TEM)研究了脱聚超分散金刚石(UDD)。此外,以去离子水为基液,制备了不同浓度的纳米金刚石纳米流体。用透射电镜研究了其粒径分布,平均粒径约为6 nm。测定了纳米流体在不同浓度和温度下的导热系数。结果表明,与基液相比,导热系数提高了15%,导热系数随温度和颗粒载荷的增加而增加。样品的粘度升高可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural and Thermal Characterization of Diamond Nanofluids
Conventional heat transfer fluids such as water, ethylene glycol, and mineral oil, that are used widely in industry suffer from low thermal conductivity. On the other hand, diamond has shown exceptional thermal properties with a thermal conductivity higher than five times of copper and about zero electrical conductivity. To investigate the effectiveness of nanodiamond particles in traditional heat transfer fluids, we study deaggregated ultra-dispersed diamonds (UDD) using X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). Furthermore, nanodiamond nanofluids were prepared at different concentrations in deionized (DI) water as the base fluid. Particle size distribution was investigated using TEM and the average particle size have been reported around 6 nm. The thermal conductivity of nanofluids was measured at different concentrations and temperatures. The results indicate up to 15% enhancement in thermal conductivity compared with the base fluid and thermal conductivity increases with temperature and particle loading. The viscosity raise in the samples have been negligible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信