H

L. h., Uke, Haefer, G. Ford
{"title":"H","authors":"L. h., Uke, Haefer, G. Ford","doi":"10.1002/9781119548836.ch8","DOIUrl":null,"url":null,"abstract":"In this work, we propose a solution to the performance problem described by 𝐻 (cid:2998) adaptive observer Here, a linear polytopic varying systems is considered and also submitted to actuator faults. A new convex optimization theorem in terms of linear matrix (LMI) is given. In fact the solution guaranties 𝐻 (cid:2998) performance. To resolve the BMI problem, we introduce a new variable in order separate the Lyapunov function and the observer gain. The corresponding proofs of convergence are developed based on a polyquadratic approach. The efficiency and the performances of the proposed adaptive observer are illustrated on controlling a VTOL air craft.","PeriodicalId":394324,"journal":{"name":"The Princeton Handbook of Multicultural Poetries","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1921-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H\",\"authors\":\"L. h., Uke, Haefer, G. Ford\",\"doi\":\"10.1002/9781119548836.ch8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a solution to the performance problem described by 𝐻 (cid:2998) adaptive observer Here, a linear polytopic varying systems is considered and also submitted to actuator faults. A new convex optimization theorem in terms of linear matrix (LMI) is given. In fact the solution guaranties 𝐻 (cid:2998) performance. To resolve the BMI problem, we introduce a new variable in order separate the Lyapunov function and the observer gain. The corresponding proofs of convergence are developed based on a polyquadratic approach. The efficiency and the performances of the proposed adaptive observer are illustrated on controlling a VTOL air craft.\",\"PeriodicalId\":394324,\"journal\":{\"name\":\"The Princeton Handbook of Multicultural Poetries\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1921-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Princeton Handbook of Multicultural Poetries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119548836.ch8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Princeton Handbook of Multicultural Poetries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119548836.ch8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种解决𝐻(cid:2998)自适应观测器描述的性能问题的方法,这里考虑了一个线性多面体变化系统,并且也提交了执行器故障。给出了线性矩阵(LMI)的一个新的凸优化定理。事实上,该解决方案保证𝐻(cid:2998)性能。为了解决BMI问题,我们引入了一个新的变量来分离李雅普诺夫函数和观测器增益。基于多二次方法给出了相应的收敛性证明。通过对垂直起降飞行器的控制,说明了所提出的自适应观测器的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H
In this work, we propose a solution to the performance problem described by 𝐻 (cid:2998) adaptive observer Here, a linear polytopic varying systems is considered and also submitted to actuator faults. A new convex optimization theorem in terms of linear matrix (LMI) is given. In fact the solution guaranties 𝐻 (cid:2998) performance. To resolve the BMI problem, we introduce a new variable in order separate the Lyapunov function and the observer gain. The corresponding proofs of convergence are developed based on a polyquadratic approach. The efficiency and the performances of the proposed adaptive observer are illustrated on controlling a VTOL air craft.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信