基于正则化共轭梯度的稀疏自适应算法

R. Das
{"title":"基于正则化共轭梯度的稀疏自适应算法","authors":"R. Das","doi":"10.1109/SPCOM50965.2020.9179548","DOIUrl":null,"url":null,"abstract":"Adaptive algorithms in general yield slow convergence rate while identifying systems with colored input. In this context, the Adaptive Conjugate Gradient (ACG) algorithm shows fast convergence for colored input. However, the ACG algorithm do not exploit system sparsity. In this paper, the conjugate gradient based sparse adaptive algorithms are proposed. In particular, $\\ell_{1}$ and $\\ell_{0}$ norm penalties are added to the cost function of the ACG algorithm in order to attract the inactive taps to their optimum (i.e., zero) levels, and the resulting algorithms yield better steady-state performance. Simulation results show that the proposed algorithm outperforms recently proposed $\\ell_{0-}$ Recursive Least Square $(\\ell_{0^{-}}$RLS) algorithm.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ℓ1/ℓ0 Regularized Conjugate Gradient Based Sparse Adaptive Algorithms\",\"authors\":\"R. Das\",\"doi\":\"10.1109/SPCOM50965.2020.9179548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive algorithms in general yield slow convergence rate while identifying systems with colored input. In this context, the Adaptive Conjugate Gradient (ACG) algorithm shows fast convergence for colored input. However, the ACG algorithm do not exploit system sparsity. In this paper, the conjugate gradient based sparse adaptive algorithms are proposed. In particular, $\\\\ell_{1}$ and $\\\\ell_{0}$ norm penalties are added to the cost function of the ACG algorithm in order to attract the inactive taps to their optimum (i.e., zero) levels, and the resulting algorithms yield better steady-state performance. Simulation results show that the proposed algorithm outperforms recently proposed $\\\\ell_{0-}$ Recursive Least Square $(\\\\ell_{0^{-}}$RLS) algorithm.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般的自适应算法在识别有色输入系统时收敛速度较慢。在这种情况下,自适应共轭梯度(ACG)算法对彩色输入显示出快速收敛。然而,ACG算法没有利用系统稀疏性。提出了一种基于共轭梯度的稀疏自适应算法。特别是,$\ell_{1}$和$\ell_{0}$范数惩罚被添加到ACG算法的成本函数中,以便将非活动抽头吸引到其最佳(即零)水平,并且由此产生的算法产生更好的稳态性能。仿真结果表明,该算法优于最近提出的$\ell_{0-}$递归最小二乘$(\ell_{0^{-}}$RLS)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ℓ1/ℓ0 Regularized Conjugate Gradient Based Sparse Adaptive Algorithms
Adaptive algorithms in general yield slow convergence rate while identifying systems with colored input. In this context, the Adaptive Conjugate Gradient (ACG) algorithm shows fast convergence for colored input. However, the ACG algorithm do not exploit system sparsity. In this paper, the conjugate gradient based sparse adaptive algorithms are proposed. In particular, $\ell_{1}$ and $\ell_{0}$ norm penalties are added to the cost function of the ACG algorithm in order to attract the inactive taps to their optimum (i.e., zero) levels, and the resulting algorithms yield better steady-state performance. Simulation results show that the proposed algorithm outperforms recently proposed $\ell_{0-}$ Recursive Least Square $(\ell_{0^{-}}$RLS) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信