通过MPI_T启用回调驱动的运行时内省

Marc-André Hermanns, N. Hjelm, Michael Knobloch, K. Mohror, M. Schulz
{"title":"通过MPI_T启用回调驱动的运行时内省","authors":"Marc-André Hermanns, N. Hjelm, Michael Knobloch, K. Mohror, M. Schulz","doi":"10.1145/3236367.3236370","DOIUrl":null,"url":null,"abstract":"Understanding the behavior of parallel applications that use the Message Passing Interface (MPI) is critical for optimizing communication performance. Performance tools for MPI currently rely on the PMPI Profiling Interface or the MPI Tools Information Interface, MPI_T, for portably collecting information for performance measurement and analysis. While tools using these interfaces have proven to be extremely valuable for performance tuning, these interfaces only provide synchronous information, i.e., when an MPI or an MPI_T function is called. There is currently no option for collecting information about asynchronous events from within the MPI library. In this work we propose a callback-driven interface for event notification from MPI implementations. Our approach is integrated in the existing MPI_T interface and provides a portable API for tools to discover and register for events of interest. We demonstrate the functionality and usability of the interface with a prototype implementation in Open MPI, a small logging tool (MEL) and the measurement infrastructure Score-P.","PeriodicalId":225539,"journal":{"name":"Proceedings of the 25th European MPI Users' Group Meeting","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Enabling callback-driven runtime introspection via MPI_T\",\"authors\":\"Marc-André Hermanns, N. Hjelm, Michael Knobloch, K. Mohror, M. Schulz\",\"doi\":\"10.1145/3236367.3236370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the behavior of parallel applications that use the Message Passing Interface (MPI) is critical for optimizing communication performance. Performance tools for MPI currently rely on the PMPI Profiling Interface or the MPI Tools Information Interface, MPI_T, for portably collecting information for performance measurement and analysis. While tools using these interfaces have proven to be extremely valuable for performance tuning, these interfaces only provide synchronous information, i.e., when an MPI or an MPI_T function is called. There is currently no option for collecting information about asynchronous events from within the MPI library. In this work we propose a callback-driven interface for event notification from MPI implementations. Our approach is integrated in the existing MPI_T interface and provides a portable API for tools to discover and register for events of interest. We demonstrate the functionality and usability of the interface with a prototype implementation in Open MPI, a small logging tool (MEL) and the measurement infrastructure Score-P.\",\"PeriodicalId\":225539,\"journal\":{\"name\":\"Proceedings of the 25th European MPI Users' Group Meeting\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th European MPI Users' Group Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3236367.3236370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3236367.3236370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

理解使用消息传递接口(Message Passing Interface, MPI)的并行应用程序的行为对于优化通信性能至关重要。MPI的性能工具目前依赖于PMPI分析接口或MPI工具信息接口(MPI_T),用于便携地收集用于性能测量和分析的信息。虽然使用这些接口的工具已被证明对性能调优非常有价值,但这些接口仅提供同步信息,即当调用MPI或MPI_T函数时。目前还没有从MPI库中收集异步事件信息的选项。在这项工作中,我们提出了一个回调驱动的接口,用于来自MPI实现的事件通知。我们的方法集成在现有的MPI_T接口中,为工具发现和注册感兴趣的事件提供了一个可移植的API。我们通过Open MPI、一个小型日志工具(MEL)和测量基础设施Score-P中的原型实现演示了接口的功能和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling callback-driven runtime introspection via MPI_T
Understanding the behavior of parallel applications that use the Message Passing Interface (MPI) is critical for optimizing communication performance. Performance tools for MPI currently rely on the PMPI Profiling Interface or the MPI Tools Information Interface, MPI_T, for portably collecting information for performance measurement and analysis. While tools using these interfaces have proven to be extremely valuable for performance tuning, these interfaces only provide synchronous information, i.e., when an MPI or an MPI_T function is called. There is currently no option for collecting information about asynchronous events from within the MPI library. In this work we propose a callback-driven interface for event notification from MPI implementations. Our approach is integrated in the existing MPI_T interface and provides a portable API for tools to discover and register for events of interest. We demonstrate the functionality and usability of the interface with a prototype implementation in Open MPI, a small logging tool (MEL) and the measurement infrastructure Score-P.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信