基于最优传感器配置的位置时间序列聚类

Z. Yang, Hung-Yu kao
{"title":"基于最优传感器配置的位置时间序列聚类","authors":"Z. Yang, Hung-Yu kao","doi":"10.1109/TAAI.2012.29","DOIUrl":null,"url":null,"abstract":"Many researches focus on clustering location or time series. In time series data, similarity metric are often used to measure the similar data. Many works use different algorithms to calculate similarity between two subsequences. Also, in location clustering, the well-known algorithm k-means and k-NN propose excellent results, and many works focus on how to increase efficient and accuracy of these algorithms. However, in some cases, we need to consider both similarities between locations and time series. Like greenhouse or wildfire detection, key points in these cases play an important status. This paper addresses how to cluster both location points and time series data together. We propose a new algorithm to consider location and time series together. We further show the algorithm we proposed can solve the problem of real cases well.","PeriodicalId":385063,"journal":{"name":"2012 Conference on Technologies and Applications of Artificial Intelligence","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Location Time-Series Clustering on Optimal Sensor Arrangement\",\"authors\":\"Z. Yang, Hung-Yu kao\",\"doi\":\"10.1109/TAAI.2012.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many researches focus on clustering location or time series. In time series data, similarity metric are often used to measure the similar data. Many works use different algorithms to calculate similarity between two subsequences. Also, in location clustering, the well-known algorithm k-means and k-NN propose excellent results, and many works focus on how to increase efficient and accuracy of these algorithms. However, in some cases, we need to consider both similarities between locations and time series. Like greenhouse or wildfire detection, key points in these cases play an important status. This paper addresses how to cluster both location points and time series data together. We propose a new algorithm to consider location and time series together. We further show the algorithm we proposed can solve the problem of real cases well.\",\"PeriodicalId\":385063,\"journal\":{\"name\":\"2012 Conference on Technologies and Applications of Artificial Intelligence\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Technologies and Applications of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2012.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Technologies and Applications of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究集中在聚类位置或时间序列上。在时间序列数据中,相似性度量常用于度量相似数据。许多作品使用不同的算法来计算两个子序列之间的相似性。此外,在位置聚类中,众所周知的k-means算法和k-NN算法也取得了很好的效果,如何提高这些算法的效率和准确性也引起了许多研究的关注。然而,在某些情况下,我们需要同时考虑地点和时间序列之间的相似性。像温室或野火探测一样,关键点在这些情况下起着重要的作用。本文讨论了如何将位置点和时间序列数据聚类在一起。我们提出了一种同时考虑位置和时间序列的新算法。进一步证明了所提出的算法可以很好地解决实际案例中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location Time-Series Clustering on Optimal Sensor Arrangement
Many researches focus on clustering location or time series. In time series data, similarity metric are often used to measure the similar data. Many works use different algorithms to calculate similarity between two subsequences. Also, in location clustering, the well-known algorithm k-means and k-NN propose excellent results, and many works focus on how to increase efficient and accuracy of these algorithms. However, in some cases, we need to consider both similarities between locations and time series. Like greenhouse or wildfire detection, key points in these cases play an important status. This paper addresses how to cluster both location points and time series data together. We propose a new algorithm to consider location and time series together. We further show the algorithm we proposed can solve the problem of real cases well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信