{"title":"基于线性复杂度因子累积滤波器的联合立体摄像机标定与多目标跟踪","authors":"M. Campbell, Daniel E. Clark","doi":"10.1109/SDF.2019.8916653","DOIUrl":null,"url":null,"abstract":"The calibration of an unknown sensor, such as a camera, is a key issue in the sensor fusion domain. This paper addresses this problem by expanding upon previously introduced work. This method uses a unified Bayesian framework with an alternative parameterisation known as disparity space to calibrate an unknown camera's spatial parameters in reference to a known camera. Here, the recently developedLinear-Complexity Cumulant (LCC) filter is used to improve the both the multitarget tracking and calibration facets of the framework. The new implementation is compared against a Probability Hypothesis Density (PHD) method upon simulated data.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"9 Volume 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint stereo camera calibration and multi-target tracking using the linear-complexity factorial cumulant filter\",\"authors\":\"M. Campbell, Daniel E. Clark\",\"doi\":\"10.1109/SDF.2019.8916653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calibration of an unknown sensor, such as a camera, is a key issue in the sensor fusion domain. This paper addresses this problem by expanding upon previously introduced work. This method uses a unified Bayesian framework with an alternative parameterisation known as disparity space to calibrate an unknown camera's spatial parameters in reference to a known camera. Here, the recently developedLinear-Complexity Cumulant (LCC) filter is used to improve the both the multitarget tracking and calibration facets of the framework. The new implementation is compared against a Probability Hypothesis Density (PHD) method upon simulated data.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"9 Volume 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint stereo camera calibration and multi-target tracking using the linear-complexity factorial cumulant filter
The calibration of an unknown sensor, such as a camera, is a key issue in the sensor fusion domain. This paper addresses this problem by expanding upon previously introduced work. This method uses a unified Bayesian framework with an alternative parameterisation known as disparity space to calibrate an unknown camera's spatial parameters in reference to a known camera. Here, the recently developedLinear-Complexity Cumulant (LCC) filter is used to improve the both the multitarget tracking and calibration facets of the framework. The new implementation is compared against a Probability Hypothesis Density (PHD) method upon simulated data.