微通道散热器热边界层传热系数的测量

Mehrdad Mehrvand, S. Putnam
{"title":"微通道散热器热边界层传热系数的测量","authors":"Mehrdad Mehrvand, S. Putnam","doi":"10.1109/ITHERM.2016.7517588","DOIUrl":null,"url":null,"abstract":"This study describes the use of optical pump-probe diagnostics to characterize the heat transfer coefficient (HTC) in a developing thermal boundary layer in a microchannel. We use a differential form of the anisotropic time-domain thermoreflectance (TDTR) technique to measure the HTC as a function of fluid flow rate (or Reynolds number, Re). The testing environment/geometry consists of single-phase, degassed water flowing in a rectangular microchannel (hydraulic diameter Dh ≅ 480 μm) with local spot heating by the pump TDTR laser beam. Relative to the HTC measured with non-flowing (static) fluids, we find a 30% increase in the HTC for single-phase water flowing at Re ~ 1800.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Heat transfer coefficient measurements in the thermal boundary layer of microchannel heat sinks\",\"authors\":\"Mehrdad Mehrvand, S. Putnam\",\"doi\":\"10.1109/ITHERM.2016.7517588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study describes the use of optical pump-probe diagnostics to characterize the heat transfer coefficient (HTC) in a developing thermal boundary layer in a microchannel. We use a differential form of the anisotropic time-domain thermoreflectance (TDTR) technique to measure the HTC as a function of fluid flow rate (or Reynolds number, Re). The testing environment/geometry consists of single-phase, degassed water flowing in a rectangular microchannel (hydraulic diameter Dh ≅ 480 μm) with local spot heating by the pump TDTR laser beam. Relative to the HTC measured with non-flowing (static) fluids, we find a 30% increase in the HTC for single-phase water flowing at Re ~ 1800.\",\"PeriodicalId\":426908,\"journal\":{\"name\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2016.7517588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究描述了使用光泵探针诊断来表征微通道中发展中的热边界层中的传热系数(HTC)。我们使用各向异性时域热反射(TDTR)技术的微分形式来测量HTC作为流体流速(或雷诺数,Re)的函数。测试环境/几何结构包括单相、脱气水在矩形微通道(水力直径Dh = 480 μm)中流动,由泵浦TDTR激光束局部加热。相对于非流动(静态)流体测量的HTC,我们发现在Re ~ 1800流动的单相水的HTC增加了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat transfer coefficient measurements in the thermal boundary layer of microchannel heat sinks
This study describes the use of optical pump-probe diagnostics to characterize the heat transfer coefficient (HTC) in a developing thermal boundary layer in a microchannel. We use a differential form of the anisotropic time-domain thermoreflectance (TDTR) technique to measure the HTC as a function of fluid flow rate (or Reynolds number, Re). The testing environment/geometry consists of single-phase, degassed water flowing in a rectangular microchannel (hydraulic diameter Dh ≅ 480 μm) with local spot heating by the pump TDTR laser beam. Relative to the HTC measured with non-flowing (static) fluids, we find a 30% increase in the HTC for single-phase water flowing at Re ~ 1800.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信