ASCE 7-16与ASCE 7-10土-结构相互作用规律对比评价

F. Khosravikia, M. Mahsuli, M. Ghannad
{"title":"ASCE 7-16与ASCE 7-10土-结构相互作用规律对比评价","authors":"F. Khosravikia, M. Mahsuli, M. Ghannad","doi":"10.1061/9780784481325.040","DOIUrl":null,"url":null,"abstract":"This paper evaluates the consequences of practicing soil structure interaction (SSI) regulations of ASCE 7-16 on seismic performance of building structures. The motivation for this research stems from the significant changes in the new SSI provisions of ASCE 7-16 compared to the previous 2010 edition. Generally, ASCE 7 considers SSI as a beneficial effect, and allows designer to reduce the design base shear. However, literature shows that this idea cannot properly capture the SSI effects on nonlinear systems. ASCE 7-16 is the first edition of ASCE 7 that considers the SSI effect on yielding systems. This study investigates the consequences of practicing the new provisions on a wide range of buildings with different dynamic characteristics on different soil types. Ductility demand of the structure forms the performance metric of this study, and the probability that practicing SSI provisions, in lieu of fixed-base provisions, increases the ductility demand of the structure is computed. The analyses are conducted within a probabilistic framework which considers the uncertainties in the ground motion and in the properties of the soil-structure system. It is concluded that, for structures with surface foundation on moderate to soft soils, SSI regulations of both ASCE 7-10 and ASCE 7-16 are fairly likely to result in a similar and larger structural responses than those obtained by practicing the fixed-base design regulations. However, for squat and ordinary stiff structures on soft soil or structures with embedded foundation on moderate to soft soils, the SSI provisions of ASCE 7-16 result in performance levels that are closer to those obtained by practicing the fixed-base regulations. Finally, for structures on very soft soils, the new SSI provisions of ASCE 7-16 are likely to rather conservative designs.","PeriodicalId":390991,"journal":{"name":"arXiv: Geophysics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparative Assessment of Soil-Structure Interaction Regulations of ASCE 7-16 and ASCE 7-10\",\"authors\":\"F. Khosravikia, M. Mahsuli, M. Ghannad\",\"doi\":\"10.1061/9780784481325.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates the consequences of practicing soil structure interaction (SSI) regulations of ASCE 7-16 on seismic performance of building structures. The motivation for this research stems from the significant changes in the new SSI provisions of ASCE 7-16 compared to the previous 2010 edition. Generally, ASCE 7 considers SSI as a beneficial effect, and allows designer to reduce the design base shear. However, literature shows that this idea cannot properly capture the SSI effects on nonlinear systems. ASCE 7-16 is the first edition of ASCE 7 that considers the SSI effect on yielding systems. This study investigates the consequences of practicing the new provisions on a wide range of buildings with different dynamic characteristics on different soil types. Ductility demand of the structure forms the performance metric of this study, and the probability that practicing SSI provisions, in lieu of fixed-base provisions, increases the ductility demand of the structure is computed. The analyses are conducted within a probabilistic framework which considers the uncertainties in the ground motion and in the properties of the soil-structure system. It is concluded that, for structures with surface foundation on moderate to soft soils, SSI regulations of both ASCE 7-10 and ASCE 7-16 are fairly likely to result in a similar and larger structural responses than those obtained by practicing the fixed-base design regulations. However, for squat and ordinary stiff structures on soft soil or structures with embedded foundation on moderate to soft soils, the SSI provisions of ASCE 7-16 result in performance levels that are closer to those obtained by practicing the fixed-base regulations. Finally, for structures on very soft soils, the new SSI provisions of ASCE 7-16 are likely to rather conservative designs.\",\"PeriodicalId\":390991,\"journal\":{\"name\":\"arXiv: Geophysics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/9780784481325.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/9780784481325.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文评价了实施ASCE 7-16土-结构相互作用(SSI)规范对建筑结构抗震性能的影响。本研究的动机源于ASCE 7-16新SSI条款与2010年版相比的重大变化。ASCE 7一般认为SSI为有利影响,允许设计者减小设计基底剪力。然而,文献表明,这种想法不能很好地捕捉非线性系统的SSI效应。ASCE 7-16是ASCE 7的第一版,它考虑了SSI对屈服系统的影响。本研究探讨了在不同土壤类型、不同动力特性的大范围建筑物上实施新规定的结果。结构的延性需求构成了本研究的性能指标,并计算了采用SSI规定代替固定基础规定增加结构延性需求的概率。分析是在考虑地震动和土-结构系统性质不确定性的概率框架内进行的。结果表明,对于中软地基上具有表面基础的结构,ASCE 7-10和ASCE 7-16的SSI规范很可能产生与固定基础设计规范相似且更大的结构响应。然而,对于软土上的深蹲和普通刚性结构或中软土上的嵌入式基础结构,ASCE 7-16的SSI规定使其性能水平更接近于实施固定基础规定所获得的性能水平。最后,对于在非常软的土壤上的结构,ASCE 7-16的新SSI规定可能是相当保守的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Assessment of Soil-Structure Interaction Regulations of ASCE 7-16 and ASCE 7-10
This paper evaluates the consequences of practicing soil structure interaction (SSI) regulations of ASCE 7-16 on seismic performance of building structures. The motivation for this research stems from the significant changes in the new SSI provisions of ASCE 7-16 compared to the previous 2010 edition. Generally, ASCE 7 considers SSI as a beneficial effect, and allows designer to reduce the design base shear. However, literature shows that this idea cannot properly capture the SSI effects on nonlinear systems. ASCE 7-16 is the first edition of ASCE 7 that considers the SSI effect on yielding systems. This study investigates the consequences of practicing the new provisions on a wide range of buildings with different dynamic characteristics on different soil types. Ductility demand of the structure forms the performance metric of this study, and the probability that practicing SSI provisions, in lieu of fixed-base provisions, increases the ductility demand of the structure is computed. The analyses are conducted within a probabilistic framework which considers the uncertainties in the ground motion and in the properties of the soil-structure system. It is concluded that, for structures with surface foundation on moderate to soft soils, SSI regulations of both ASCE 7-10 and ASCE 7-16 are fairly likely to result in a similar and larger structural responses than those obtained by practicing the fixed-base design regulations. However, for squat and ordinary stiff structures on soft soil or structures with embedded foundation on moderate to soft soils, the SSI provisions of ASCE 7-16 result in performance levels that are closer to those obtained by practicing the fixed-base regulations. Finally, for structures on very soft soils, the new SSI provisions of ASCE 7-16 are likely to rather conservative designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信