{"title":"用自回归语言模型和反向翻译逼近SMM4H","authors":"Joseph Cornelius, Tilia Ellendorff, Fabio Rinaldi","doi":"10.18653/V1/2021.SMM4H-1.32","DOIUrl":null,"url":null,"abstract":"We describe our submissions to the 6th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (OGNLP) participated in the sub-task: Classification of tweets self-reporting potential cases of COVID-19 (Task 5). For our submissions, we employed systems based on auto-regressive transformer models (XLNet) and back-translation for balancing the dataset.","PeriodicalId":378985,"journal":{"name":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approaching SMM4H with auto-regressive language models and back-translation\",\"authors\":\"Joseph Cornelius, Tilia Ellendorff, Fabio Rinaldi\",\"doi\":\"10.18653/V1/2021.SMM4H-1.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our submissions to the 6th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (OGNLP) participated in the sub-task: Classification of tweets self-reporting potential cases of COVID-19 (Task 5). For our submissions, we employed systems based on auto-regressive transformer models (XLNet) and back-translation for balancing the dataset.\",\"PeriodicalId\":378985,\"journal\":{\"name\":\"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/V1/2021.SMM4H-1.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/2021.SMM4H-1.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approaching SMM4H with auto-regressive language models and back-translation
We describe our submissions to the 6th edition of the Social Media Mining for Health Applications (SMM4H) shared task. Our team (OGNLP) participated in the sub-task: Classification of tweets self-reporting potential cases of COVID-19 (Task 5). For our submissions, we employed systems based on auto-regressive transformer models (XLNet) and back-translation for balancing the dataset.