{"title":"非随机化概率次线性时间算法","authors":"Marius Zimand","doi":"10.1109/CCC.2007.19","DOIUrl":null,"url":null,"abstract":"There exists a positive constant alpha < 1 such that for any function <i>T</i>(<i>n</i>) les <i>n</i> <sup>alpha</sup> and for any problem <i>L</i> isin BPTIME(<i>T</i>(<i>n</i>)), there exists a deterministic algorithm running in poly(<i>T</i>(<i>n</i>)) time which decides L, except for at most a 2<sup>-Omega</sup> <sup>(T(n)</sup> <sup>log</sup> <sup>T(n))</sup> fraction of inputs of length <i>n</i>.","PeriodicalId":175854,"journal":{"name":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Derandomizing Probabilistic Sublinear-Time Algorithms\",\"authors\":\"Marius Zimand\",\"doi\":\"10.1109/CCC.2007.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exists a positive constant alpha < 1 such that for any function <i>T</i>(<i>n</i>) les <i>n</i> <sup>alpha</sup> and for any problem <i>L</i> isin BPTIME(<i>T</i>(<i>n</i>)), there exists a deterministic algorithm running in poly(<i>T</i>(<i>n</i>)) time which decides L, except for at most a 2<sup>-Omega</sup> <sup>(T(n)</sup> <sup>log</sup> <sup>T(n))</sup> fraction of inputs of length <i>n</i>.\",\"PeriodicalId\":175854,\"journal\":{\"name\":\"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2007.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2007.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Derandomizing Probabilistic Sublinear-Time Algorithms
There exists a positive constant alpha < 1 such that for any function T(n) les nalpha and for any problem L isin BPTIME(T(n)), there exists a deterministic algorithm running in poly(T(n)) time which decides L, except for at most a 2-Omega(T(n)logT(n)) fraction of inputs of length n.