{"title":"利用多传感器SAR数据改进森林地区SMOS土壤湿度算法的性能","authors":"Jaakko Seppänen, J. Praks, O. Antropov","doi":"10.1109/IGARSS.2016.7729428","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for improving boreal forest soil moisture estimation using L-band microwave radiometer. The effect is achieved by introducing improved description of forest canopy contribution from multisensor SAR measurements. Spaceborne L-band radiometer is a valuable tool for providing soil moisture estimates globally. Unfortunately, complex vegetation layer, such as forest, can hamper the accuracy of soil moisture retrieval leading to rather poor results particularly over boreal forest areas. Currently, the L-band Microwave Emission of the Biosphere (L-MEB) model adopted in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm, uses Leaf Area Index (LAI) in order to to account for forest canopy contribution to total emission. However, it can argued that LAI presents poorly the actual structure of the coniferous forest. The LAI is calibrated to represent only the leaves, but at L-band, the main contribution to emission and attenuation is due to branches, while trunks and leaves have smaller effects. Here, we tested several combinations of spaceborne SAR data as a substitute of LAI in temperature brightness models for soil moisture retrieval. Particularly when L-band ALOS PALSAR stripmap data were used, the agreement between modelled and measured TB has improved from 0.46 to 0.55 in the L-MEB model.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving SMOS soil moisture algorithm performance in forested areas with multisensor SAR data\",\"authors\":\"Jaakko Seppänen, J. Praks, O. Antropov\",\"doi\":\"10.1109/IGARSS.2016.7729428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for improving boreal forest soil moisture estimation using L-band microwave radiometer. The effect is achieved by introducing improved description of forest canopy contribution from multisensor SAR measurements. Spaceborne L-band radiometer is a valuable tool for providing soil moisture estimates globally. Unfortunately, complex vegetation layer, such as forest, can hamper the accuracy of soil moisture retrieval leading to rather poor results particularly over boreal forest areas. Currently, the L-band Microwave Emission of the Biosphere (L-MEB) model adopted in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm, uses Leaf Area Index (LAI) in order to to account for forest canopy contribution to total emission. However, it can argued that LAI presents poorly the actual structure of the coniferous forest. The LAI is calibrated to represent only the leaves, but at L-band, the main contribution to emission and attenuation is due to branches, while trunks and leaves have smaller effects. Here, we tested several combinations of spaceborne SAR data as a substitute of LAI in temperature brightness models for soil moisture retrieval. Particularly when L-band ALOS PALSAR stripmap data were used, the agreement between modelled and measured TB has improved from 0.46 to 0.55 in the L-MEB model.\",\"PeriodicalId\":179622,\"journal\":{\"name\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2016.7729428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7729428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving SMOS soil moisture algorithm performance in forested areas with multisensor SAR data
In this paper, we propose a new approach for improving boreal forest soil moisture estimation using L-band microwave radiometer. The effect is achieved by introducing improved description of forest canopy contribution from multisensor SAR measurements. Spaceborne L-band radiometer is a valuable tool for providing soil moisture estimates globally. Unfortunately, complex vegetation layer, such as forest, can hamper the accuracy of soil moisture retrieval leading to rather poor results particularly over boreal forest areas. Currently, the L-band Microwave Emission of the Biosphere (L-MEB) model adopted in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm, uses Leaf Area Index (LAI) in order to to account for forest canopy contribution to total emission. However, it can argued that LAI presents poorly the actual structure of the coniferous forest. The LAI is calibrated to represent only the leaves, but at L-band, the main contribution to emission and attenuation is due to branches, while trunks and leaves have smaller effects. Here, we tested several combinations of spaceborne SAR data as a substitute of LAI in temperature brightness models for soil moisture retrieval. Particularly when L-band ALOS PALSAR stripmap data were used, the agreement between modelled and measured TB has improved from 0.46 to 0.55 in the L-MEB model.