{"title":"基于机器学习的计划,以防止住院和降低哥伦比亚法定医疗保健系统的成本","authors":"Alvaro J. Riascos, Natalia Serna","doi":"10.4018/IJKDB.2018070103","DOIUrl":null,"url":null,"abstract":"Health-care systems that rely on hospitalization for early patient treatment pose a financial concern for governments. In this article, the author suggests a hospitalization prevention program in which the decision of whether to intervene on a patient depends on a simple decision model and the prediction of the patient risk of an annual length-of-stay using machine learning techniques. These results show that the prevention program achieves significant cost savings relative to several base scenarios for program efficacies greater than or equal to 40% and intervention costs per patient of 100,000 to 700,000 Colombian pesos (i.e., approximately 14% to 100% of the average cost per patient in Colombia statuary health care system). This article also shows how tree-based methods outperform linear regressions when predicting an annual length-of-stay and the final model achieves a lower out-of-sample error compared to those of the Heritage Health Prize.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Based Program to Prevent Hospitalizations and Reduce Costs in the Colombian Statutory Health Care System\",\"authors\":\"Alvaro J. Riascos, Natalia Serna\",\"doi\":\"10.4018/IJKDB.2018070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health-care systems that rely on hospitalization for early patient treatment pose a financial concern for governments. In this article, the author suggests a hospitalization prevention program in which the decision of whether to intervene on a patient depends on a simple decision model and the prediction of the patient risk of an annual length-of-stay using machine learning techniques. These results show that the prevention program achieves significant cost savings relative to several base scenarios for program efficacies greater than or equal to 40% and intervention costs per patient of 100,000 to 700,000 Colombian pesos (i.e., approximately 14% to 100% of the average cost per patient in Colombia statuary health care system). This article also shows how tree-based methods outperform linear regressions when predicting an annual length-of-stay and the final model achieves a lower out-of-sample error compared to those of the Heritage Health Prize.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJKDB.2018070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2018070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Based Program to Prevent Hospitalizations and Reduce Costs in the Colombian Statutory Health Care System
Health-care systems that rely on hospitalization for early patient treatment pose a financial concern for governments. In this article, the author suggests a hospitalization prevention program in which the decision of whether to intervene on a patient depends on a simple decision model and the prediction of the patient risk of an annual length-of-stay using machine learning techniques. These results show that the prevention program achieves significant cost savings relative to several base scenarios for program efficacies greater than or equal to 40% and intervention costs per patient of 100,000 to 700,000 Colombian pesos (i.e., approximately 14% to 100% of the average cost per patient in Colombia statuary health care system). This article also shows how tree-based methods outperform linear regressions when predicting an annual length-of-stay and the final model achieves a lower out-of-sample error compared to those of the Heritage Health Prize.