统计神经网络模型选择的调整网络信息准则

C. Udomboso, A. Chukwu, I. Dontwi
{"title":"统计神经网络模型选择的调整网络信息准则","authors":"C. Udomboso, A. Chukwu, I. Dontwi","doi":"10.22237/JMASM/1478003040","DOIUrl":null,"url":null,"abstract":"In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC) criterion, based on Kullback's symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The ANIC improves model selection in more sample sizes than does the NIC.","PeriodicalId":225385,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models\",\"authors\":\"C. Udomboso, A. Chukwu, I. Dontwi\",\"doi\":\"10.22237/JMASM/1478003040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC) criterion, based on Kullback's symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The ANIC improves model selection in more sample sizes than does the NIC.\",\"PeriodicalId\":225385,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1478003040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1478003040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文推导并研究了基于Kullback对称散度的调整网络信息准则(Adjusted Network Information Criterion, ANIC)准则,该准则被设计为拟合模型的期望Kullback- leibler信息的渐近无偏估计。与NIC相比,ANIC在更多的样本量上改进了模型选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC) criterion, based on Kullback's symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The ANIC improves model selection in more sample sizes than does the NIC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信