一类双一元函数的解析函数初始系数的上估计

L. F. Modupe, O. O. Timothy
{"title":"一类双一元函数的解析函数初始系数的上估计","authors":"L. F. Modupe, O. O. Timothy","doi":"10.56557/ajomcor/2022/v29i27835","DOIUrl":null,"url":null,"abstract":"In this paper, Opoola differential operator, which is a generalization of both Salagean differential operator and Al-Oboudi differential operator is used to define a new subclass of analytic and bi-univalent functions by using quasi-subordination principle. The upper estimates for the first two initial coefficients of functions in the new subclass defined are obtained by means of Ma-Minda functions.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UPPER ESTIMATES OF THE INITIAL COEFFICIENTS OF ANALYTIC FUNCTIONS BELONGING TO A CERTAIN CLASS OF BI-UNIVALENT FUNCTIONS\",\"authors\":\"L. F. Modupe, O. O. Timothy\",\"doi\":\"10.56557/ajomcor/2022/v29i27835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Opoola differential operator, which is a generalization of both Salagean differential operator and Al-Oboudi differential operator is used to define a new subclass of analytic and bi-univalent functions by using quasi-subordination principle. The upper estimates for the first two initial coefficients of functions in the new subclass defined are obtained by means of Ma-Minda functions.\",\"PeriodicalId\":200824,\"journal\":{\"name\":\"Asian Journal of Mathematics and Computer Research\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics and Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/ajomcor/2022/v29i27835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2022/v29i27835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用拟隶属原理,利用Salagean微分算子和Al-Oboudi微分算子的推广——Opoola微分算子,定义了解析函数和双一价函数的一个新的子类。利用Ma-Minda函数得到了新子类中函数的前两个初始系数的上估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UPPER ESTIMATES OF THE INITIAL COEFFICIENTS OF ANALYTIC FUNCTIONS BELONGING TO A CERTAIN CLASS OF BI-UNIVALENT FUNCTIONS
In this paper, Opoola differential operator, which is a generalization of both Salagean differential operator and Al-Oboudi differential operator is used to define a new subclass of analytic and bi-univalent functions by using quasi-subordination principle. The upper estimates for the first two initial coefficients of functions in the new subclass defined are obtained by means of Ma-Minda functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信